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The Visualization of the  
Electromagnetic Field in Microwave Applicators 

Vladan D. Stanković, Aleksandar Lj. Stošić, Dalibor Ž. Ranđelović 
 

Abstract - These papers present field patterns inside an 
microwave cavity. Routines wrote in MATLAB were used for the 
visualization of the field patterns. Heating loaded microwave 
cavity were considered at the end of these papers. 
Keywords- Microwave applicators, cavity 

I. INTRODUCTION 

Users of microwave cavities can be unfamiliar with some of 
the salient features of their equipment. Such applicators may 
be, for example, a domestic microwave oven at home for 
cooking food, or a specialized piece of microwave equipment 
in a laboratory for research purpose. The main part of 
microwave aplicators is cavity (the empty space surrounded 
by metallic walls where the material is placed) such as where 
the low-and high-intensity regions exist. Without the aid of 
computer simulation substantiated with reliable measurement, 
it is difficult to build a mental picture of what is actually 
going on inside the loaded cavity. 
 
A good start in understanding microwave heating cavities is to 
consider the field patterns, referred to as modes, inside an 
empty microwave cavity. A knowledge of the modal field 
distribution leads to an understanding of the power loss 
density (i.e., hot and cold areas) inside the load. These papers 
concentrates on the field. 
 
It is undeniable that the multimode cavity in practice always 
contains a load, and to some extent the study of the empty 
cavity can be considered irrelevant. However, much can be 
derived from the examination. Moreover, it also serves as a 
good background for understanding the waveguide-fed loaded 
cavity situation. 

II. FIELD EQUATIONS 

 With Maxwell's equations aplied to a metal-walled 
rectangular cavity subject to the appropriate boundary 
conditions at each wall, the field equations are separated into 
TEmnp (Hmnp) and TMmnp (Emnp) modes. The modes' spatial 
field distributions are determined by the size of the cavity. 
With the z-axis as the propagation direction, TE modes have 
no electric field component along that axis. TM modes have 
no magnetic field component along the same axis. Note that 
this nomenclature is typical but not unique. 
 
The derivation of the field components is found in many 
textbooks. The equations follow that of a rectangular 
waveguide with additional boundary conditions provided by 
two plates shorting both ends of the guide. The field 
components for  TEmnp modes are given by 
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For TMmnp modes, 
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m, n, and p are the integer numbers of half-sinusoidal 
variations of the field along the principal coordinate axes, and 
a, b, and d are the cavity dimensions along the x, y, and z 
coordinates, respectively. 
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From either the TE or TM mode equations, it is apparent that 
the electric and magnetic fields are spatially 90 degrees out of 
phase. The modes in the cavity are represented by a resonant 
circuit where the stored energy changes from electric to 
magnetic fields and back. During each cycle, as the magnetic 
field decreases, the electric field increases and vice versa. The 
energy is stored volumetrically unless losses are included. 
Losses are due to the metal walls and the load, if included. 
 
To help in understanding the mathematics involved, an 
analogy can be used whereby an elastic string attached to two 
opposite fixed walls is plucked. The walls are boundary 
conditions. If the string is plucked in the middle, it will 
generate a standing wave pattern in one dimension. If three 
strings are attached in three orthogonal planes, then plucking 
all of them at the same time could hypothetically generate a 
three-dimensional standing wave pattern. This pattern can be 
viewed in the same light as the field in a multimode cavity. 

III. THEORETICAL MDES INSIDE THE EMPTY CAVITY 

With the cavity several wavelengths long in at least two 
dimension in a given frequency range, a number of resonant 
modes are supported. The dimensions determine the number 
of half-wavelengths in each of the principal directions. For an 
empty cavity, each of these modes exhibits a sharp resonant 
response. The number of modes that exist is given by 
 

222
2 






+






+






=

d
p

b
n

a
m

oomnp
πππεεµω   (14) 

In an empty cavity, 1=ε . For a cubic structure, dba == , 
(14) becomes 
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To dwell briefly on details, certain modes do not exist. For 
TM modes, only p can be zero (i.e., TM0np and TMm0p cannot 
exist). For TE modes, only  p cannot be zero (i.e., TEmn0 
cannot exist). The nonexistence of these modes can be 
checked by substituting the zero index in the electric and 
magnetic field equations. TE00p also cannot exist. In this case, 
the electric field components are zero but one of the magnetic 
field components, the one along the z axis, is not zero. Since 
the magnetic and electric fields have to exist simultaneously, 
this mode therefore cannot occur in the cavity. Modes with 
nonzero indices are degenerate (i.e., they exist as TE and TM 
with the same frequency). The degenerate modes have the 
same mode indices but the field patterns are different. For 
example, appling (14) on noncubic cavity, wich dimension is 

mm260350360 ×× , for mode 1-4-3 the calculated frequency 
is 2.4697 GHz, and it is also degenerate. Modes that contain a 
zero index exist as either TE or TM, excluding those that do 
not satisfy the boundary conditions stated above. For a cubic 
cavity, besides TE and TM being degenerate, any mode with a 
permutation of the same three indices is also degenerate. 
 

Note that (14) applies to an empty or a fully loaded cavity; it 
does not apply to a partially loaded cavity. Usually, only part 
of the cavity is filled and therefore more rigorous methods 
(i.e., simulation) than this simple analytic expression are used.  

IV. NONCUBIC CAVITY 

Althought most microwave cavities in use are noncubic, cubic 
cavities can also be used. At 2,45 GHz, the maximum number 
of degenerate modes for all cubic cavities with a volume less 
than or equal to 100L is 18. The cubic cavity is not as popular 
as the noncubic one because it produces too many degenerate 
modes. For example, at 2.4288 GHz there are 12 modes, and 
at 2.4535 GHz there are 21 modes. A reason for not choosing 
a cubic cavity is that if the source frequency is shifted, there is 
the possibility that all the modes might be missed altogether. 
However, this does not take into account the effect of the load, 
the feed coupling that sometimes splits the modes, and the 
feed positioning that will not excite all the degenerate modes.  
 
Figure 1 shows a noncubic rectangular multimode cavity used 
here to study field patterns. The dimensions of the cavity are 

260350360 ×× mm. The cavity has four entry ports on one 
wall. The coupling between these ports when they are excited 
simultaneously is very important. Entry ports that are not used 
are closed off with carefully made plates. One feed port, 
slightly off-center, is placed on the opposite wall. One of the 
walls is removable so that different metal plates with different 
feed positioning can be tested. The plate is firmly clamped to 
the rest of the cavity using winged nuts.  
 

 
 

Figure 1. Multimode cavity with multiple entry ports and 
arrayed holes for electric field probing. 

 
The excitation is achieved through a TE10 mode WR340 
waveguide with dimension 2004386 ×× mm. The cavity is 
made of aluminum ( mSe /754.3=σ ) with thicknesses of 6 
mm on the wall with the feeding ports and 4,5 mm on the 
remaining walls. The whole box is seam welded. Holes of 3 
mm in diameter are drilled on three of the faces. The holes are 
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spaced at a distance of 20 mm from each other and are used in 
the probing method to detect the electric field.  

IV. Q OF A CAVITY 

The quality factor of a cavity at resonance is defined as 
 

cycle per lost Energy
redEnergy stoQ π2=   (16) 

If a measurement of S11 with frequency is available , the Q of 
a cavity is found from 
 

f
fQ o

∆
=     (17) 

where fo is the resonant frequency and f∆ is the half-power 
frequency bandwith. 
 
A cavity, in practice, has walls with finite conductivity. This 
leads to losses and a reduction in stored energy. The power 
supplied is also dissipated in the door seal, the mode stirrer, 
and the feed. With the presence of a load inside the cavity, the 
total dielectrically loaded cavity Q, LoadedQ  is given by 
 
 

+=
redEnergy Sto 

cavity the inside cycle per lostEnergy 
QLoaded π2

1  

redEnergy Sto 
load the inside  cycle per lostEnergy  

π2
  (18) 

If the load is a good absorber of microwave energy, then the 
LoadedQ decreases to such an extent that the loaded system can 

almost be thought of as nonresonant. 

V. FIELDS IN AN EMPTY RECTANGULAR NON FED 
RESONANT MULTIMODE CAVITY 

Mathematical explanations of modes are widely available. 
These papers adds a pictorial view of higher-order modes 

through simulation. The visualization is useful as it gives a 
clear display of the modes and their corresponding field 
magnitudes and directions. This is important for feed 
positioning and feed crosscoupling studies. The modes are 
checked analytically using a MATLAB routine, and 
experimentally. The analytical expression is useful as it gives 
a quick and informative means of examining the field 
behavior. 
 
A pictorial set of cavity TE mode 1-4-3 and its corresponding 
field distribution is presented in Figures 2,3,4, and 5. These 
pictures are ploted in MATLAB. The model in Figures 5a and 
5b showing the arrow plots is sectioned at a distance of 5 mm 
from the surface of the cavity. As only dielectric material that 
absorbs and is heated by the electric field is considered, 
electric field plots are presented. However, there are instances 
where consideration of the magnetic field pattern is essential, 
manly in heating ferromagnetic materials. For interest, 
therefore, one magnetic field arrow plot is shown (Figure 5b). 
 
In Figure 5a, the electric field is terminated normally on the 
walls. The tangential field cannot exist along the walls in the 
z-axis as this field must be zero. The direction of the field is 
90 degrees to the axis of propagation, making it a TE mode. 
The magnitude of the field at a point is depicted either by its 
density or by the lenght of the directed lines in the vicinity of 
the point. The red shading therefore corresponds to the 
maximum electric field. Note that two quarter variations along 
the x-axis in Figure 4 equals the one half-sinusoidal variation. 
For higher-order modes, the electric field can form loops 
surrounding a changing magnetic field in the middle of the 
cavity. Figure 5b has their magnetic field 90 degrees to the 
propagation axis, making these modes transverse magnetic. 
Therefore, the magnetic fields form loops around the changing 
electric field to satisfy Maxwell's equations.  
 
The cavity is rectangular and therefore contains lines of field 
symmetry. There is no difference in placing a feeding TE10 
waveguide on one wall or the wall facing it. Each walls has 
two axes of symmetry.  

 

 
Figure 2. Electric field plot of TE mode 1-4-3 in the y-z plane      Figure 3. Electric field plot of TE mode 1-4-3 in the x-z plane 
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Figure 4. Electric field plot of TE mode 1-4-3 in the x -y plane  Figure 5. Electric (a); magnetic (b); field arrow plots TE, 

TM mode 1-4-3 in the x-y plate at mmz 5= . 
 
 

VI. CONCLUSIONS 

Ever since microwave heating was discovered, one of the 
issues that has drawn much interest is the heating uniformity 
in a load. The results indicate that the load significantly 
influences the pattern inside the cavity with patchy regions of 
minimum and maximum electric field. The electric field 
patterns, inside loaded cavity, cannot be correlated with those 
present inside an empty cavity. Uneven field distribution 
creates the socalled hot and cold spots. Hot spots could, for 
example, contribute to the phenomenon of thermal runaway 
typical of ceramic materials. For food engineers, cold spots 
are unwelcome as they allow bacteria to thrive if the 
temperature is not sufficiently high enough to kill them, wich 
could cause food poisoning. Therefore, a more uniform 
heating is generally desirable. If a better distribution is the 
objective, then the fallowing questions are sensibly asked:  

1. Where is a good position inside the cavity?  
2. What size and shape load should be used? 
3. What size and shape cavity should be used? (Some 

researchers use an octagonally shaped cavity instead 
of the usual rectangular cavity). 

4. Where should the feeds be placed and how many are 
needed? 

5. How broad is the source spectrum of each magnetron 
and at which frequency is each spectrum centered? 

(Each one influences the number of modes and hence 
the heating pattern inside the cavity). 

6. How easy is it to position the other feeds for low 
crosscoupling? 

 
All these factors will have a bearing on the field pattern. A 
further aspects is that the dielectric properties of most 
materials change with temperature. Because of the 
unpredictable field pattern inside the loaded cavity, one can 
interpret the results confidently provided the simulation is 
supported with reliable experimental agreement.  
Hardware and software are very powerful nowdays, so its are 
good tools for simulations and visualizations a field pattern 
inside loaded cavity.  
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