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Abstract - In this paper we discuss the implementation of a 
genetic based algorithm that is used to produce timetables 
for a small school and a entire University. The problem is a 
special version of the optimization problems. There are 
some classical methods, but Genetic algorithms were 
applied because they are robust and efficient in real life. A 
problem-specific chromosome representation and 
knowledge-augmented genetic operators have been 
developed: these operators ‘intelligently’ avoid building 
illegal timetables. 
The construction of timetables is a very difficult problem 
with a lot of constraints that have to be respected. However 
there exists a set of entities and constraints, which are 
common to every possible instantiation of the timetabling 
problem. 
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I. INTRODUCTION 

The timetabling problem, which has an important role in 
education, is a special version of the optimization 
problems found in real life situations. The construction is 
a very difficult problem with a lot of constraints that have 
to be respected. 
The timetabling problem has always been solved by 
human resource in small school and for University 
Course. Almost a week of work of an experienced person 
is needed to produce a timetable for an average 
institution and the result is often not satisfactory. When 
the preconditions change, the whole work becomes 
unusable, and has to be restarted from scratch. The 
problem is optimization problem. Existing solutions are 
either difficult to use or lead to inadequate solutions. 
It is difficult to define how good a potential timetable is, 
but much easier is to declare when a timetable is 
unusable as it is always exact. 
Genetic algorithms have been applied to a very wide 
range of practical problems, often with valuable results. 
This paper surveys just a example, to illustrate the 
diversity of approaches and to point to some of the 
considerations that have proved important in making 
applications successful. Because GAs provide a fairly 
comprehensible way to address a wide range of di

cult engineering and optimization problems producing 
good if not optimal results, it seems that the technology 
is finding its way into real-world use much more easily 
than, say, expert systems did. 
There are quite a lot of versions of the timetabling 
problem, differing from one school to the next: Class-
Teacher Timetabling, University Course Timetabling, 
Lecture timetabling et etc 

II. THE TIMETABLING PROBLEM 

The Timetabling problem comes up every year in 
educational institutions. Students, teachers, lessons and 
classrooms have to be arranged optimally. Lecture 
timetabling is the problem of assigning times and places 
to a many separate lectures, tutorials, etc , to satisfy 
several constraints concerning capacities and locations of 
available rooms, free-time needs and other such 
considerations for lecturers, and relationships between 
particular courses. The most prominent overall constraint 
(central to all timetabling problems) is that there should 
be no clashes; 
The course-timetabling problem essentially involves the 
assignment of weekly lectures to time periods and lecture 
rooms. 
The class-Teacher Timetabling problem basically 
considers set of classes and set of teachers. 
Timetabling the classes of University considers the 
resources: rooms, students and lecturers. 
Faced with increasing student numbers, with new courses 
introduced, with shortage of lecture rooms and 
laboratories and with growing numbers of lessons open 
for students of different departments, and hence with a 
large number of conflicting constraints, timetables which 
can be largely accepted by teachers and students are very 
difficult to schedule at university. 
Each day of week is divided into 13 60-minute periods 
(time slots), which results in a total of 65 periods 
numbered from 0 to 64, as can be seen in Fig. 1. 
Each lesson must be assigned to a time period in such a 
way that a number of requirements are met. These 
requirements can be divided into 2 categories: 

A. HARD CONSTRAINTS 
A timetable is feasible if all hard constraints are satisfied 
 



 

658 

Tuples 
10 67 
45 32 
9 

Tuples 
12 89 
62  7 

Tuples 
78 23 
99 

Figure 1 

• Each lesson  is scheduled to exactly one period. 
• There are no clashes at all: Neither a class nor a 

teacher nor a room is assigned to more than one 
lesson in the same period. 

• Teacher unavailability is considered. 
• All allocated rooms are large enough to hold the 

students. 
• Specific room requirements are taken into 

account. 
• Lessons marked as prescheduled are scheduled 

to the specified time. 
• Lessons are blocked, if so required. 

B. SECOND ORDER (OR SOFT) CONSTRAINTS 
Good timetables satisfy as many of the following soft 
constraints as possible, such as: 

• Students, as well as some teachers, do not like 
to have many ‘holes’ (empty periods between 
two lessons) in their timetables. 

• Lessons should be spread uniformly over the 
whole week, in general. 

• Some teachers, by contrast, wish to have all 
their lessons scheduled to consecutive periods. 

• Some teachers wish to have a special equipped 
classroom. 

• In order to avoid much movement, lecture 
rooms should be close to the host department. 

• Some lessons should not take place late in the 
evening. 

• Each student may select a certain number of 
optional course modules; in order to give a real 
choice, conflicts where 2 modules chosen by a 
student are scheduled at the same period should 
be avoided. 

• Rooms should be just large enough to hold the 
students. 

• As far as possible, classes should either have 
lessons in the morning or afternoon 

III. APPLYING GENETIC ALGORITHMS 
TO THE TIMETABLING PROBLEM 

A timetable can be represented by a fixed set of tuples, 
each of which contains a class number, a teacher number 
and a room number. The scheduling algorithm must 
assign a period number to each of these tuples such that a 
given class, teacher or room does not appear more than 
once in a period. In order to use a genetic algorithm to 
solve this problem, it is necessary to devise a 
representation for a timetable, which maps onto 
chromosomes. Each chromosome is composed of genes, 
each of which represents some property of the individual 
timetable. Figure 2 (L-Label, C-Class, T-Teacher, R-
Room) shows a sample timetable as a collection of 
tuples. Each period (timeslot 0 to 64) contains a number 
of tuples, identified by their label. The values of the 
fields of the tuple would contain valid class, teacher and 
room numbers. 
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Figure 4 

In Figure 3 the data has been mapped onto periods, and 
shows many tuples packed into each period. The cost of a 
timetable can then be computed by adding up the number 
of clashes in each period. The good and bad attributes of 
a timetable are related to the quality of the packing of 

Time D1 D2 D3 D4 D5 
7-8 0 13 26 39 52 
8-9 1 14 27 40 53 
9-10 2 15 28 41 54 
10-11 3 16 29 42 55 
11-12 4 17 30 43 56 
12-13 5 18 31 44 57 
13-14 6 19 32 45 58 
14-15 7 20 33 46 50 
15-16 8 21 34 47 60 
16-17 9 22 35 48 61 
17-18 10 23 36 49 62 
18-19 11 24 37 50 63 
19-20 12 25 38 51 64 
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tuples into periods, rather than the absolute period 
location of any one tuple. Thus, the genetic 
representation must preserve good packing, remove bad 
ones and allow new packing to form as the population 
evolves. 
Figure 4 shows one possible mapping of tuples onto 
chromosomes. In this scheme each period represents a 
chromosome. Using this mapping allows good packings 
to be preserved between generations, because 
corresponding periods are mated, as described shortly. 
We discarded a number of representations because they 
did not allow packings to propagate between generations. 
Figure 5 shows the process of mating two timetables to 
produce a new timetable. The diagram only shows the 
crossover of one period. Each period is crossed over 
independently. In this example, a random crossover site 
is chosen, and the new period in the child is constructed 
with the first 3 genes of parent 1, and the last 2 of parent 
2. The same process creates each period of the child. If 
the crossover site is at either end of the chromosome, 
then all of that period is taken from only one parent. The 
fitness of the new child can be computed incrementally 
as the change in cost of the period. 

 

Figure 5 

The child can receive further mutation of its mapping. In 
this example, a randomly chosen tuple from a randomly 
chosen period is moved to another randomly chosen 
period. 
Genetic algorithms require a measure of the fitness of an 
individual in order to determine which individuals in the 
population survive. The higher the fitness, the more 
likely the individual will survive. The cost measure 
developed for the timetabling problem represents a high 
quality solution with a minimal cost value (a value of 0 is 
optimal). Thus, a fitness value is computed from the cost 
of a timetable by subtracting the cost from a fitness iling. 
In this way, an increased cost generates a lower fitness 
value. Fitness values are further scaled so that unfit 
individuals have a negative fitness value, and are then 
removed from the population. 
In this example the crossover is simple (one-point). Call 
the initial individuals Parent1 и Parent2 and select the 
crossover point randomly and then copy the first part of 

Parent1 to Child2 and the second part of Parent2 to 
Child1. 
The two-point crossover is a similar operator, at the 
beginning two crossover points are selected, then the 
same procedure is used as in the case of the one-point 
crossover. 
For the order crossover (OX) two crossover points are 
selected randomly. The genetic substrate of Parent2 is 
copied to Child1, and then the items found in the middle 
part of Parent1 are removed from Child1. The holes, 
which come off, are moved to the middle part, among the 
two crossover points. The ends of the item are connected 
and start to push the items to the left from the second 
crossover point until the item which was originally 
before the second crossover point does not arrive to the 
position located before the first crossover point. The 
middle part of Parent1 can be copied to the realized free 
place at the middle of child1. The same process can 
generate Child2. 
The cycle crossover (CX) does not use crossover points. 
It copies the first item of Parent1 to Child1, and then it 
looks for the first item of Parent2 and searches it in 
Parent1. It copies it to Child1. It looks for the item at the 
same position in A2, and it searches it again, and so on. It 
continues the process as long as it does not find an 
already copied item. By this time, it finished the cycle 
started from the first item of Parent1. The remained 
empty fields of Child1 are filled with the items of 
Parent2, from the same position. 
The role of the mutation in the GA is the assurance of 
heuristic search; it tries to get the individuals found in the 
up to now, undiscovered part of the problem space. 
The basic case of the consistence preserver mutation is 
the following: choose two points and the length in an 
individual, then swap the section of the randomized 
length from the first drawn point with the section of the 
same length starting from the second drawn point. 
It is possible to define cost function for evaluating a 
given timetable. This function is an arbitrary measure of 
the quality of the solution. An acceptable timetable has a 
cost of 0. The optimization problem becomes one of 
minimizing the value of this cost function. The cost of 
any period can be expressed as the sum of three 
components corresponding to a class cost, a teacher cost 
and a room cost. It is not strictly necessary to sum the 
components, providing they can be combined to reflect 
the quality of the solution. However, by using a sum, it is 
easy to weight the various costs so that one may be made 
more important than the others. In this way the 
optimization process can be guided towards a solution in 
which some types of clash are more important than 
others. 
The class cost is the number of times each of the classes 
in the period appears in that period, less one if it is 
greater than zero. If a class appears no times or once in a 
period then the cost of that class is zero. If it appears 
many times the class cost for that class is the number of 
times less one. The class cost for a period is the sum of 
all class costs. The same computation applies for teachers 

10 67 45 32 9
Parent1 
Period i 

Parent2 
Period i 84 3442 77 35

67 45 10 77 35
Child 
Period i 



 

660 

and rooms. The cost of the total timetable is the sum of 
the period costs. Therefore, any optimization technique 
should aim to find a configuration with the lowest 
possible cost. 
Genetic algorithms require a measure of the fitness of an 
individual in order to determine which individuals in the 
population survive. The higher the fitness, the more 
likely the individual will survive. The cost measure 
developed for the timetabling problem represents a high 
quality solution with a minimal cost value (a value of 0 is 
optimal). Thus, a fitness value is computed from the cost 
of a timetable by subtracting the cost from a fitness 
ceiling. In this way, an increased cost generates a lower 
fitness value. Fitness values are further scaled so that 
unfit individuals have a negative fitness value, and are 
then removed from the population. 

IV. A GENETIC ALGORITHM 

The genetic algorithm can be summarized as follows: 

While ((number of generations < limit) && (no perfect 
individual)) 
  { for (each child in the new population) 
     {choose two living parents at random from old 
population; 
      create an empty child; 
      for (each period of the parents) 
           {mate corresponding periods; 
             copy new child period to corresponding position 
in child; 
             } 
       repair lost && duplicated labels; 
       apply mutation to randomly selected period && 
tuple; 
       measure fitness of individual; 
       if fitness < minimum allowed fitness (based on 
fitness scaling)  
           {set child status to born dead} 
       else 
            {set child status to living} 
  } 
  old population = new population; 
} 

The algorithm is viewed from the perspective of the child 
because this allows random selection of parents. The 
mating is performed with a randomly chosen crossover 
site within the period, and is done for each period of the 
individual. Mutation is performed on randomly selected 
periods and tuples, and occurs with some specified 
probability. 

V. CONCLUSIONS 

This paper has proposed a GA based technique for 
solving the timetable problem and which is capable of: 
• Handling many different forms of timetabling 
constraint while only ever dealing with feasible 
timetables. 
• Generating high-quality solutions despite the increasing 
intractability, which has resulted from modularization. 
• Providing a choice of several different good schedules 
from which the user may choose the best. 
• Directing the timetabler to the most constrained parts of 
the timetable so that, if necessary, adjustments may be 
made manually. 
• Allowing database queries to produce a schedule for 
any staff member, student, room or item of equipment. 
• Generating a personalized view of the timetable for 
each member of staff. 

VI. REFERENCES 

[1] de Werra, D., "An Introduction to Timetabling", 
European Journal of Operational Research, Vol. 19, pag.151-
162. 
[2] Hertz A., de Werra D., "Informatique et horaires 
scolaires", Output, Vol.12, pag.53-56. 
[3] Goldberg D. L., "Genetic Algorithms in Search, 
Optimization, and Machine Learning", Addison-Wesley, 1989 
[4] Goldberg D, "Web Courses", 
http://www.engr.uiuc.edu/OCEE, 2000. 
[5] Mitchell M., "An Introduction to Genetic Algorithms", 
Massachusetts Institute of Technology, 1996. 
[6] Rich, D. C. “A Smart Genetic Algorithm for University 
Timetabling”, In Lecture Notes in Computer Science, 
Vol.1153, p181-197, Springer. 
[7] Paechter B., Rankin R., Cumming A., "Timetabling the 
Classes of an Entire University with an Evolutionary 
Algorithm", Napier University, Edinburgh, Scotland. 

 
 


	Back to PO4 session
	Main menu

