

657

Genetic Algorithms in Timetabling
Milena Karova1, Violeta Bojikova2, Radoj Stoyanov3

1 Milena Karova is with the the department of Computer Science,
Studentska 1, Technical University Varna Email: mkarova@ms.ieee.bg
2 Violeta Bojikova is with the department of Computer Science,
Studentska 1, Technical University Varna Email: bojikov@nat.bg
3 Radoj Stoyanov is student of the department of Computer Science,
Studentska 1, Technical University Varna

Abstract - In this paper we discuss the implementation of a
genetic based algorithm that is used to produce timetables
for a small school and a entire University. The problem is a
special version of the optimization problems. There are
some classical methods, but Genetic algorithms were
applied because they are robust and efficient in real life. A
problem-specific chromosome representation and
knowledge-augmented genetic operators have been
developed: these operators ‘intelligently’ avoid building
illegal timetables.
The construction of timetables is a very difficult problem
with a lot of constraints that have to be respected. However
there exists a set of entities and constraints, which are
common to every possible instantiation of the timetabling
problem.

Keywords - genetic algorithms, timetabling, constraint, time
slots, crossover, lesson, class, teacher

I. INTRODUCTION

The timetabling problem, which has an important role in
education, is a special version of the optimization
problems found in real life situations. The construction is
a very difficult problem with a lot of constraints that have
to be respected.
The timetabling problem has always been solved by
human resource in small school and for University
Course. Almost a week of work of an experienced person
is needed to produce a timetable for an average
institution and the result is often not satisfactory. When
the preconditions change, the whole work becomes
unusable, and has to be restarted from scratch. The
problem is optimization problem. Existing solutions are
either difficult to use or lead to inadequate solutions.
It is difficult to define how good a potential timetable is,
but much easier is to declare when a timetable is
unusable as it is always exact.
Genetic algorithms have been applied to a very wide
range of practical problems, often with valuable results.
This paper surveys just a example, to illustrate the
diversity of approaches and to point to some of the
considerations that have proved important in making
applications successful. Because GAs provide a fairly
comprehensible way to address a wide range of di

cult engineering and optimization problems producing
good if not optimal results, it seems that the technology
is finding its way into real-world use much more easily
than, say, expert systems did.
There are quite a lot of versions of the timetabling
problem, differing from one school to the next: Class-
Teacher Timetabling, University Course Timetabling,
Lecture timetabling et etc

II. THE TIMETABLING PROBLEM

The Timetabling problem comes up every year in
educational institutions. Students, teachers, lessons and
classrooms have to be arranged optimally. Lecture
timetabling is the problem of assigning times and places
to a many separate lectures, tutorials, etc , to satisfy
several constraints concerning capacities and locations of
available rooms, free-time needs and other such
considerations for lecturers, and relationships between
particular courses. The most prominent overall constraint
(central to all timetabling problems) is that there should
be no clashes;
The course-timetabling problem essentially involves the
assignment of weekly lectures to time periods and lecture
rooms.
The class-Teacher Timetabling problem basically
considers set of classes and set of teachers.
Timetabling the classes of University considers the
resources: rooms, students and lecturers.
Faced with increasing student numbers, with new courses
introduced, with shortage of lecture rooms and
laboratories and with growing numbers of lessons open
for students of different departments, and hence with a
large number of conflicting constraints, timetables which
can be largely accepted by teachers and students are very
difficult to schedule at university.
Each day of week is divided into 13 60-minute periods
(time slots), which results in a total of 65 periods
numbered from 0 to 64, as can be seen in Fig. 1.
Each lesson must be assigned to a time period in such a
way that a number of requirements are met. These
requirements can be divided into 2 categories:

A. HARD CONSTRAINTS
A timetable is feasible if all hard constraints are satisfied

658

Tuples
10 67
45 32
9

Tuples
12 89
62 7

Tuples
78 23
99

Figure 1

• Each lesson is scheduled to exactly one period.
• There are no clashes at all: Neither a class nor a

teacher nor a room is assigned to more than one
lesson in the same period.

• Teacher unavailability is considered.
• All allocated rooms are large enough to hold the

students.
• Specific room requirements are taken into

account.
• Lessons marked as prescheduled are scheduled

to the specified time.
• Lessons are blocked, if so required.

B. SECOND ORDER (OR SOFT) CONSTRAINTS
Good timetables satisfy as many of the following soft
constraints as possible, such as:

• Students, as well as some teachers, do not like
to have many ‘holes’ (empty periods between
two lessons) in their timetables.

• Lessons should be spread uniformly over the
whole week, in general.

• Some teachers, by contrast, wish to have all
their lessons scheduled to consecutive periods.

• Some teachers wish to have a special equipped
classroom.

• In order to avoid much movement, lecture
rooms should be close to the host department.

• Some lessons should not take place late in the
evening.

• Each student may select a certain number of
optional course modules; in order to give a real
choice, conflicts where 2 modules chosen by a
student are scheduled at the same period should
be avoided.

• Rooms should be just large enough to hold the
students.

• As far as possible, classes should either have
lessons in the morning or afternoon

III. APPLYING GENETIC ALGORITHMS
TO THE TIMETABLING PROBLEM

A timetable can be represented by a fixed set of tuples,
each of which contains a class number, a teacher number
and a room number. The scheduling algorithm must
assign a period number to each of these tuples such that a
given class, teacher or room does not appear more than
once in a period. In order to use a genetic algorithm to
solve this problem, it is necessary to devise a
representation for a timetable, which maps onto
chromosomes. Each chromosome is composed of genes,
each of which represents some property of the individual
timetable. Figure 2 (L-Label, C-Class, T-Teacher, R-
Room) shows a sample timetable as a collection of
tuples. Each period (timeslot 0 to 64) contains a number
of tuples, identified by their label. The values of the
fields of the tuple would contain valid class, teacher and
room numbers.

L 1

C 4
T 5

R 12

L 2

C 1
T 2
R 4

L 3

C 9
T 5
R 11

L 4

C 4
T 9
R 8

L n

C 3
T 3
R 5

Figure 2

Timeslot 1 Timeslot 2 Timeslot N

Figure 3

Timeslot 1 Timeslot 2 Timeslot N

Figure 4

In Figure 3 the data has been mapped onto periods, and
shows many tuples packed into each period. The cost of a
timetable can then be computed by adding up the number
of clashes in each period. The good and bad attributes of
a timetable are related to the quality of the packing of

Time D1 D2 D3 D4 D5
7-8 0 13 26 39 52
8-9 1 14 27 40 53
9-10 2 15 28 41 54
10-11 3 16 29 42 55
11-12 4 17 30 43 56
12-13 5 18 31 44 57
13-14 6 19 32 45 58
14-15 7 20 33 46 50
15-16 8 21 34 47 60
16-17 9 22 35 48 61
17-18 10 23 36 49 62
18-19 11 24 37 50 63
19-20 12 25 38 51 64

67

10

109

45

32

89

12

62

7

23

78

99

659

tuples into periods, rather than the absolute period
location of any one tuple. Thus, the genetic
representation must preserve good packing, remove bad
ones and allow new packing to form as the population
evolves.
Figure 4 shows one possible mapping of tuples onto
chromosomes. In this scheme each period represents a
chromosome. Using this mapping allows good packings
to be preserved between generations, because
corresponding periods are mated, as described shortly.
We discarded a number of representations because they
did not allow packings to propagate between generations.
Figure 5 shows the process of mating two timetables to
produce a new timetable. The diagram only shows the
crossover of one period. Each period is crossed over
independently. In this example, a random crossover site
is chosen, and the new period in the child is constructed
with the first 3 genes of parent 1, and the last 2 of parent
2. The same process creates each period of the child. If
the crossover site is at either end of the chromosome,
then all of that period is taken from only one parent. The
fitness of the new child can be computed incrementally
as the change in cost of the period.

Figure 5

The child can receive further mutation of its mapping. In
this example, a randomly chosen tuple from a randomly
chosen period is moved to another randomly chosen
period.
Genetic algorithms require a measure of the fitness of an
individual in order to determine which individuals in the
population survive. The higher the fitness, the more
likely the individual will survive. The cost measure
developed for the timetabling problem represents a high
quality solution with a minimal cost value (a value of 0 is
optimal). Thus, a fitness value is computed from the cost
of a timetable by subtracting the cost from a fitness iling.
In this way, an increased cost generates a lower fitness
value. Fitness values are further scaled so that unfit
individuals have a negative fitness value, and are then
removed from the population.
In this example the crossover is simple (one-point). Call
the initial individuals Parent1 и Parent2 and select the
crossover point randomly and then copy the first part of

Parent1 to Child2 and the second part of Parent2 to
Child1.
The two-point crossover is a similar operator, at the
beginning two crossover points are selected, then the
same procedure is used as in the case of the one-point
crossover.
For the order crossover (OX) two crossover points are
selected randomly. The genetic substrate of Parent2 is
copied to Child1, and then the items found in the middle
part of Parent1 are removed from Child1. The holes,
which come off, are moved to the middle part, among the
two crossover points. The ends of the item are connected
and start to push the items to the left from the second
crossover point until the item which was originally
before the second crossover point does not arrive to the
position located before the first crossover point. The
middle part of Parent1 can be copied to the realized free
place at the middle of child1. The same process can
generate Child2.
The cycle crossover (CX) does not use crossover points.
It copies the first item of Parent1 to Child1, and then it
looks for the first item of Parent2 and searches it in
Parent1. It copies it to Child1. It looks for the item at the
same position in A2, and it searches it again, and so on. It
continues the process as long as it does not find an
already copied item. By this time, it finished the cycle
started from the first item of Parent1. The remained
empty fields of Child1 are filled with the items of
Parent2, from the same position.
The role of the mutation in the GA is the assurance of
heuristic search; it tries to get the individuals found in the
up to now, undiscovered part of the problem space.
The basic case of the consistence preserver mutation is
the following: choose two points and the length in an
individual, then swap the section of the randomized
length from the first drawn point with the section of the
same length starting from the second drawn point.
It is possible to define cost function for evaluating a
given timetable. This function is an arbitrary measure of
the quality of the solution. An acceptable timetable has a
cost of 0. The optimization problem becomes one of
minimizing the value of this cost function. The cost of
any period can be expressed as the sum of three
components corresponding to a class cost, a teacher cost
and a room cost. It is not strictly necessary to sum the
components, providing they can be combined to reflect
the quality of the solution. However, by using a sum, it is
easy to weight the various costs so that one may be made
more important than the others. In this way the
optimization process can be guided towards a solution in
which some types of clash are more important than
others.
The class cost is the number of times each of the classes
in the period appears in that period, less one if it is
greater than zero. If a class appears no times or once in a
period then the cost of that class is zero. If it appears
many times the class cost for that class is the number of
times less one. The class cost for a period is the sum of
all class costs. The same computation applies for teachers

10 67 45 32 9
Parent1
Period i

Parent2
Period i 84 3442 77 35

67 45 10 77 35
Child
Period i

660

and rooms. The cost of the total timetable is the sum of
the period costs. Therefore, any optimization technique
should aim to find a configuration with the lowest
possible cost.
Genetic algorithms require a measure of the fitness of an
individual in order to determine which individuals in the
population survive. The higher the fitness, the more
likely the individual will survive. The cost measure
developed for the timetabling problem represents a high
quality solution with a minimal cost value (a value of 0 is
optimal). Thus, a fitness value is computed from the cost
of a timetable by subtracting the cost from a fitness
ceiling. In this way, an increased cost generates a lower
fitness value. Fitness values are further scaled so that
unfit individuals have a negative fitness value, and are
then removed from the population.

IV. A GENETIC ALGORITHM

The genetic algorithm can be summarized as follows:

While ((number of generations < limit) && (no perfect
individual))
 { for (each child in the new population)
 {choose two living parents at random from old
population;
 create an empty child;
 for (each period of the parents)
 {mate corresponding periods;
 copy new child period to corresponding position
in child;
 }
 repair lost && duplicated labels;
 apply mutation to randomly selected period &&
tuple;
 measure fitness of individual;
 if fitness < minimum allowed fitness (based on
fitness scaling)
 {set child status to born dead}
 else
 {set child status to living}
 }
 old population = new population;
}

The algorithm is viewed from the perspective of the child
because this allows random selection of parents. The
mating is performed with a randomly chosen crossover
site within the period, and is done for each period of the
individual. Mutation is performed on randomly selected
periods and tuples, and occurs with some specified
probability.

V. CONCLUSIONS

This paper has proposed a GA based technique for
solving the timetable problem and which is capable of:
• Handling many different forms of timetabling
constraint while only ever dealing with feasible
timetables.
• Generating high-quality solutions despite the increasing
intractability, which has resulted from modularization.
• Providing a choice of several different good schedules
from which the user may choose the best.
• Directing the timetabler to the most constrained parts of
the timetable so that, if necessary, adjustments may be
made manually.
• Allowing database queries to produce a schedule for
any staff member, student, room or item of equipment.
• Generating a personalized view of the timetable for
each member of staff.

VI. REFERENCES

[1] de Werra, D., "An Introduction to Timetabling",
European Journal of Operational Research, Vol. 19, pag.151-
162.
[2] Hertz A., de Werra D., "Informatique et horaires
scolaires", Output, Vol.12, pag.53-56.
[3] Goldberg D. L., "Genetic Algorithms in Search,
Optimization, and Machine Learning", Addison-Wesley, 1989
[4] Goldberg D, "Web Courses",
http://www.engr.uiuc.edu/OCEE, 2000.
[5] Mitchell M., "An Introduction to Genetic Algorithms",
Massachusetts Institute of Technology, 1996.
[6] Rich, D. C. “A Smart Genetic Algorithm for University
Timetabling”, In Lecture Notes in Computer Science,
Vol.1153, p181-197, Springer.
[7] Paechter B., Rankin R., Cumming A., "Timetabling the
Classes of an Entire University with an Evolutionary
Algorithm", Napier University, Edinburgh, Scotland.

	Back to PO4 session
	Main menu

