

669

An Approach to Measure the Cost
of Program Restructuring

Violeta T.Bojikova1 and Milena N.Karova2

1Violeta T.Bojikova is with the Department of Computer
Science, Varna –Technical University, Bulgaria,
e-mail:Bojikov@nat.bg;VBojikova@windmail.net
2Milena N. Karova is with the Department of Computer
Science, Varna –Technical University, Bulgaria
e-mail:mkarova@ms.ieee.bg

Abstract - Program restructuring tools make it easier to
rewrite software, and so should be a key part of every software
development environment. The problem is that software
developers do not know how to restructure programs. This paper
presents an approach for measuring the costs of program
restructuring. The notion “distance” between the initial and the
final software decisions was introduced.

Keywords – restructuring, design structure, program

decomposition;

I. INTRODUCTION

Changing the internal structure of a program without
changing its behaviour is called restructuring [4]. Program
restructuring is usually thought of as an activity for legacy
software. However, it can also be used to develop new
software and to improve his quality and is invaluable for
software that is only a few years old but is being actively
extended. Restructuring becomes unavoidable if the system is
to survive its growing entropy. A way for restructuring
programs is “decomposition”. “Decomposition” is an
operation to divide software structure or its components into
two or more smallers program slices [1]. Inadequate
structuring makes maintenance of the system expensive and
difficult. Improving the structure of a program is a form of
preventive maintenance that is often necessary when the
system undergoes new releases. Low coupling between parts
and high cohesion inside each part (module) are the key
features of good software design. The reasonable distance
between the original and the final structure improve the
quality of the first structure and measure the restructuring
cost.

Many Software Engineering - techniques use graph-
oriented presentation in software, by means of different types
of graphs G(X,U,Q) [2], [3]: control flow graphs, call graphs,
program dependence graphs etc. A graph-based tool
supporting module restructuring was created [3]. Part of the
restructuring problems is the lack of tool support [4]. If
program restructuring is properly supported, it becomes
widely used. If it is widely used, it will improve the quality
and decrease the cost of software. The created tool is based
[3] on the graph description of software structure and applies
a quick and easy

method for program structure decomposition that uses famous
graph algorithms for node visiting (node numeration) and is a
combination from consecutive and iterative steps. The final
solution (rrac–> Gc) of the structure decomposition process
satisfies the general requirements of the program structure
design: high cohesion inside each part (MAXIMUM of links –
inside) and low coupling between parts (MINIMUM of links
(relationships) – outside). [3].

II. “DISTANCE” BETWEEN THE FIRST AND THE
RATIONAL PROGRAM SOLUTION

This paper presents an approach for measuring the costs of
structure decomposition (restructuring) application. For this
reason the notion “distance” between two software decisions
was introduced. Indications of these costs we can find in the
number of the operations that can apply to the first software
structure to produce the second structure. If we have structure
rapr -> G={g1,g2,g3… gM} [3], a new structure rrac –>
Gc={g1

c,g2
c,g3

c …gM
c} can be generated by applying an

elementary operation “opp” on G. The four elementary
operations that we apply [3] are: “Single move”- to move one
object from a part gk into another different part gi; “Part’s
Union” - to move one part gk into another different part gi;
“Block Move” - to move a “block” from part gk into another
different part gi; “Exchange” – changing the places of two
objects, belonging to different parts.

The distance between the primary structure rapr ->
G={g1,g2,g3… gM} and the rational structure rrac –>
Gc={g1

c,g2
c,g3

c …gM
c} is the minimum number of elementary

operations that can apply to the first structure to produce the
second structure.
Distance(G, Gc)=Min(G –opp1>G1 – opp2> G2…- oppi> Gi – oppi+1

>Gi+1 …- oppc >Gc),
where “c” is natural number. Being a natural number, the
structure distance is greater than or equal to zero:

Distance(G, Gc) >=0
The distance is zero when the structure G can be

transformed into Gc with zero elementary operations, i.e.
when G and Gc do not differ. Fig 1 shows the pseudocode of
the algorithm that computes the distance between the two
program structures. It is iterative algorithm beginning with the
initial structure - G end ending when no operation is

670

performed on the current structure - G (Until not Change, i.e.
Change=False).

Procedure Operate(G, Gc,distance);
{Return(distance, Gc);}
{ G – initial structure, current structure,
 Gc – final “rational” structure}
{distance - “distance”between G and Gc}
Begin
distance=0;
Repeat {1}
Change=False; {no operation is performed on the current
structure - G}
if Ins_Segment(G…) then {Is it possible to execute “Part
Union”}
Begin Change:=True; G=Operation(G); Inc(distance);End;
For SEG:=0..M-1 do {Cycle: For ∀ part SEG=0..(M-1) do}

begin
repeat {2}{ Cycle: For ∀ node I �SEG; I:=0 – >initial
value}
 repeat {3}{ Cycle: For ∀ part K=(SEG+1)..M}
 repeat {4}{Cycle: For ∀ node J�K do
operations:}

Is it possible to execute operations “Moves” from
SEG to K;
{slivane, block, wmuk, razm – counters for
operations “Part’s unite”, “Block Move”, “Single
move”, “Exchange”}
• Is it possible to execute operation “Block

Move” from SEG (block around I�SEG) to K
i.e. call procedure Ins_Block(Seg->K) than
Change=True;G=Operation(G);Inc(distance)
else

• Is it possible to execute operation “Single
Move” from SEG (unit I�SEG) to K than ->
Change=True;G=Operation(G); Inc(distance);

Is it possible to execute operations “Moves” from
K to SEG;

• Is it possible to execute operation “Block
Move” from K (block around J�K) to SEG
i.e. call procedure Ins_Block(K->SEGK) than
Change=True; G=Operation(G); Inc(distance)
else

• Is it possible to execute operation “Single
Move” from K (unit J�K) to SEG than ->
Change=True;G=Operation(G); Inc(distance);

Is it possible to execute operation “Exchange” of
J�K with I�SEG ;
• “Exchange” is possible than Change=True;

G=Operation(G); Inc(distance);
 Gc =G;
 INC(J); until (J<=|gk|){end repeat 1}
 INC(K); until (K<=M){{end repeat 3}
 INC(I); until (J<=|gseg|){ {end repeat 2}
 INC(slivane);
 end; {For};
until not Change;{end repeat 1}
End;

Fig.1 Pseudocode of an algorithm that computes the distance
between two software structures

Let us consider the structure partition rapr ->

G={g1,g2,g3,g4} (Example 1 – Fig.5), associated with 4 parts
g1={x6}, g2= {x7 ,x8,x3}, g3={x1,x2}, g4={x4,x5}. The value of k
(“encapsulation violations” - number of the links between all
units g1,g2,g3,g4) is kapr = 8. The value of W0 – “restrictive
condition” (Fig.3) is 6. After restructuring G [3] we obtain the
structure Gc={g1,g2,g3,g4} with the parts g1={x3,x6}, g2={x7,x8,
x3}, g3 = {x1,x2}, g4 ={x4, x5}. The value of k (“encapsulation
violations” - number of the links between all units g1,g2,g3,g4)
is kapr = 8.

The distance between the two structures can be computed
by applying the algorithm in Fig. 1. The distance between G
and Gc for this example is equal to the sum of all operations
that are applied on G. There number is 5 (Fig.4 and Table1).

.

Fig. 2. Graph G before decomposition

Fig. 3. The restrictive condition’s form

Fig. 4. The operation’s counters

671

 Fig.5 Initial Solution - rapr Fig.6 Rational Solution - rrac

Example1. The initial structure (Fig.5) - rapr->
G={g1,g2,g3,g4} and the rational structure (Fig.6) Gc
={g1,g2,g3,g4} that non minimize the number of of the links
between all (modules, subsystems) parts g1,g2,g3,g4 but
improve the solution (balance the weight of parts); The graph
G before decomposition -> Fig.2;

TABLE 1
Operation - type Number

Single move 5
Block Move 0
Part’s union 0
Exchange 0

Total 5

The above notion of distance between software structures is
appealing in the context of restructuring software system
structure composed of several subsystems in different levels
of abstractions. There are different kinds of structures: module
structure, process structure, conceptual structure, uses
structure; call structure, function structure, and class
structure…

It is applicable for example in the context of module
structure because every operation type can be used for module
restructuring: to move one function from a module into
another module, to move a module into another module, to
exchange some functions from different modules. The
“distance” can be considered a unit of measure for the
restructuring effort paid when the decision is to reorganize the
parts (slices) by moving some units (part’s components)
across parts.

III. CONCLUSIONS

This paper discusses the program-restructuring problem in
the context of the restructuring costs. But the cost is not the
only factor to examine during the structure decomposition: the
presence of encapsulation violations and the level of
modularization has to be evaluated. The level of
decomposition M (number of parts) depends of the restrictive
condition W0. In conclusion, to get the whole picture of costs
and benefits of a module restructuring intervention, the
encapsulation – “k” and decomposition level - M should be
compared with the initial ones and the costs of each
restructuring alternative should be estimated. The proposed
approach to estimation the costs for restructuring is combined
with the method of structure decomposition and than watch
for the value of the goal function and the restrictive condition.
The algorithm was applied for a great number of structure
graphs. The presented tool [3] was expanded and adapted for
distance evaluating. Program restructuring tools make it easier

to rewrite software, and so should be a key part of every
software development environment. The distance between the
initial (rapr -> G) and the rational (Gc) solution depends from
the number of operations (cycle 4 – Fig1.) performed on the
initial structure (rapr -> G). Then the total number of these
operations (the algorithm’s complexity) is equal to:

C=�(n k*�(n t)), k=0..(M-1), t=(k+1)..M
M-number of parts (level of decomposition)

N=|G|=�(n t), t=1..M;
N - number of the graph’s units (graph’s nodes);
n t - number of part’s (gt) units (sugraph’s nodes);

In the software practice there is many unsolved
restructuring problems. One of them is that the “program
restructuring is language dependant”[4]. The presented
approach and the created tool are an attempt to stimulate
progress in program restructuring area. Being graph-based,
they are universal and language independent and can be used
by the software architect at different level of program’s
abstractions.

REFERENCES

1. Len Bass, Paul Clemens “Software architecture in practice”,
Addison-Wesley Longman, 1998г.

2. David Binkley “The application of program slicing to regression
testing”, J.Information and Software Technology 40 (1998) 583-
594

3. V.Bojikova, MKarova “Създаване, визуализация и операции
на програмни структури”, Int’l Scientific Conference on
Energy and Information Systems and Technologies 2001 –
Volume III, Bitola, June 7-8, 2001, 813 str.

4. Ralph E. Johnson “Program Restructuring”, University of
Illinois at Urbana-Champaign, Johnson@cs.uiuc.edu

	Back to PO4 session
	Main menu

