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in Sequence Domain 
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Abstract – In this paper the new concept for power system 

elements modeling in sequence domain is presented. The 
proposed models are decoupled either case for balanced or 
unbalanced elements. Mathematically, 6x6 sparse node-
admittance matrices describe the generators, transformers and 
lines. The load model is given as injected sequence complex 
currents (or powers) in adequate nodes of sequence circuits.  

 Keywords – Elements modeling, Sequence domain, Decoupling, 
Asymmetrical load-flow. 
               

I. INTRODUCTION 
                                      

Both symmetrical load-flow and faulted power system 
studies are performed in sequence domain. This domain is 
more efficient and comfortable than of the phase domain. The 
efficiency and comfort of the sequence domain are the result of 
diagonal forms of matrix representatives of balanced power 
systems elements (mutual couplings between phases are 
eliminated). These elements very frequently appear in typical 
power systems (practically all generators and transformers, 
transposed lines, symmetrical loads, etc.). In this case, the circuits 
representing positive-, negative- and zero-sequence models of the 
entire power system in the most number of cases can be 
represented separately, without influences to each other. 

Symmetrical states are good approximations of usual states of 
three-phase power systems. But actually, because of the presence 
of long unbalanced (untransposed) lines, asymmetrical or single-
phase loads (as induction furnaces and traction motors etc.), 
asymmetrical states in power systems are occurred.  

 For more precise analysis of three-phase power system 
asymmetrical states, the asymmetrical load-flow (ALF) analysis is 
required. Usually, the solution of ALF problem is performed using 
methods in phase domain. In this domain, (because of mutual 
couplings between phases) 6x6 node-admittance matrices which 
describe the generators, transformers and lines are not sparse. 
This fact implies increasing of both memory for problem storage 
and CPU time for problem solution in the phase domain against 
solutions in the sequence domain.  

It seems that the main reasons for avoiding the sequence 
domain in the ALF methods are the problems of elements 
modeling because of: 1 – phase shifts of three-phase transformers 
(ideal  transformers  with  complex  turns   ratios in their  sequence 
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circuits); 2 – the coupling existing between sequence circuits for 
unbalanced lines model and 3 – asymmetrical phase loads, which 
cannot be specified in the sequence domain. 
 First solutions of the ALF problem in sequence domain are 
proposed in [1]. Although the problems of unbalanced long 
lines and load modeling in sequence domain are solved, the 
problem of ideal transformers with complex turn ratio 
modeling still existed. The transformer model in sequence 
domain is obtained by transformation of its model in the phase 
domain. Thus, the advancements of direct modeling in 
sequence domain and application of 6x6 sparse matrices are 
lost. Applying the elements models presented in this paper, 
several new efficient methods for ALF analysis in sequence 
domain was established in [2,3], where the domination of the 
methods in sequence domain against the methods in phase 
domain is confirmed in any way. 
 

II. GENERATOR MODEL 
 
The generator is balanced element of the power system. In 

the sequence domain it can be presented with three decoupled 
sequence circuits. Scaled sequence circuits of a synchronous 
generator are presented in Fig.1a-c (the superscript of positive-
sequence parameters is d, for negative-sequence is i and for zero-
sequence is o; the internal and the external bus are signed by 1 and 
2, respectively).  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 1. Synchronous generator scaled positive- (a), negative- (b)

and zero-sequence circuit (c). 
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The scaled sequence impedances of the synchronous generator 
are denoted by d

Gz , i
Gz  and o

Gz ; nGz  represents the generator 
grounding impedance; the phase a generator open-circuit voltage 
is denoted by ae ; it is equal to the positive-sequence internal bus 
voltage. Usually, instead of sequence impedances, the 
sequence admittances defined with Eqs. (1) are used. 
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 In order to get the sequence domain mathematical model 
for the synchronous generator, it is necessary to establish the 
nodal voltage equations for the sequence circuits. Taking into 
account the marks from the Fig. 1, these equations are given 
by Eq. (2) in the matrix form: 
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 It is obvious that the node-admittance matrix representing 
the synchronous generator in the sequence domain is sparse 
matrix. This is not the same case in the phase domain. If 6x6 
generator node-admittance matrices in phase and sequence 
domain are compared, it would be concluded that in sequence 
domain this matrix consists 33.3% non-zero elements, but in 
phase domain all elements have non-zero values [3].  
 

III. TRANSFORMER MODEL 
 

 The three-phase transformer can be treated as a balanced 
element of the power system. In accordance with the winding 
connections, the transformer introduces phase shifting 
between the voltages (currents) on the each transformer side.  

When symmetrical states are considered, the phase shifts of 
three-phase transformers can be ignored because of complex 
powers, currents and voltages of all phases are uniformly 
transferred from one to the other transformer side, 
independently of the transformer state. In contrast, when 
asymmetrical states are considered, these transfers are neither 
uniform nor independent of the transformer state. 

Although the model of three-phase transformer with 
complex turn ratio can be presented with the three decoupled 
sequence circuits, the problem of complex turn ratio still 
exists. As an example, Y-∆-1 connected transformer sequence 
circuits are depicted in Fig. 2a-c. TZ  and  nTZ  denote the 
transformer positive-sequence and grounding impedances, 
respectively. U and I, with corresponding superscripts, denote 
complex voltages and currents. 1nV  and 2nV  are transformer 
nominal voltages. The transformer positive-sequence phase 
shift amounts +π/6 and the negative-sequence is −π/6; the 
transformer zero-sequence phase shift does not have to be 
introduced. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 

Application of the standard PU system for transferring the 
values from the absolute to the relative value domain doesn’t 
solve the problem of phase shifting. 

Ideal transformers with complex turns ratios disturb the 
symmetry and the simplicity of deriving power system node-
admittance matrices in the sequence domain. 

Difficulties that three-phase transformer phase shifts 
introduce into sequence domain models are definitely 
eliminated in [4] by applying “New Scaling Concept”. It was 
first used in [5] for evaluating a very successful solution of 
(unbalanced) power system problems with complex faults in 
the sequence domain. The result of scaling the absolute values 
with this concept is scaled sequence circuits of a Y-∆-1 
transformer, presented in Fig. 3a-c.  
                           
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Fig. 2. Y-∆-1 connected three-phase transformer positive- (a), 
negative- (b) and zero-sequence circuit (c) in absolute value domain.
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Fig. 3. Y-∆-1 connected three-phase transformer positive- (a), 
negative- (b) and zero-sequence circuit (c)  in relative value domain.
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This figure shows that the complex turns ratios (modules and 
phase shifts) of the considered Y-∆-1 three-phase transformer 
are eliminated in the sequence domain. Now, the nodal 
voltage equations for the transformer simplified sequence 
circuits can be written in matrix form with Eq. (3): 
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   (3) 

 
 In sequence domain the Y-∆-1 transformer 6x6 node-
admittance matrix has only 25% non-zero elements, but in 
phase domain this matrix has 66.7% non-zero elements [3]. 
 The node-admittance matrix depends of the transformer 
windings connection and value of the grounding impedances. 
Anyway, it is obvious that 6x6 node-admittance matrices 
representing the three-phase transformers with complex turn 
ratios in the sequence domain will be sparse matrices.  
 

IV. LINE MODEL 
 
 Transmission overhead lines can be treated as balanced 
(transposed lines) or unbalanced (untransposed high-voltage 
long lines) power system elements. If the line is balanced 
element, the line model in the sequence domain can be 
presented with three lumped-π decoupled sequence circuits. 
Each circuit consists series admittance between line ends and 
two equal shunt admittances at the line ends. Consequently, 
6x6 node-admittance matrix for the line model will be sparse. 

When the unbalanced lines are considered in sequence 
domain, there are couplings among positive-, negative- and 
zero-sequence and the line model cannot be presented with 
lumped-π decoupled sequence circuits. In this case, 6x6 node- 
admittance matrix is full with non-zero elements, just like the 
6x6 node-admittance matrix in the phase domain. Thus, the 
power system model in sequence domain cannot be presented 
with three linear decoupled sequence circuits. The points of 
mutually coupling among positive-, negative- and zero-
sequence power system circuits are just these unbalanced 
lines. Applying compound matrix notation, the unbalanced 
line in sequence domain is presented in Fig. 4. 

 
 
 
 
 
 
 
 
 

 
Inductive and capacitive mutual couplings among positive-, 

negative- and zero-sequence are expressed with non-zero off-
diagonal elements in matrices: 
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Instead of mutually admittances, the couplings can be 

expressed by compensation current sources. Thus, the 
unbalanced line model can be presented with three decoupled 
sequence circuits as it is depicted in Fig. 5a-c. The mutual 
couplings are replaced by corresponding controlled sources – 
current sources.   

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 

 
The current controlled sources in series and shunt branches 

of each sequence lumped-π circuit include the coupling 
influences from the other sequences. If the notation (m, l, 
n)=(d, i, o) where m≠l≠n is used, the self-admittance and the 
current source currents in series branch of any sequence from 
the Fig. 5 can be calculated by Eqs. (4) and (5), respectively.  
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Similarly, the self-admittance and the current source 

currents in shunt branches of any sequence can be calculated 
by Eqs. (6) and (7) for branch in node k, and Eqs. (8) and (9) 
for branch in node j.  
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Fig. 5. Unbalanced line decoupled positive- (a), negative- (b) and 
zero-sequence circuit (c) in absolute value domain. 
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Taking into account the currents directions in the sequence 

circuits depicted in Fig. 5a-c, the compensation currents 
expressed by Eq. (10) for node k and Eq. (11) for node j, can 
be defined. 
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Now, the injected currents in the ends of any sequence 
lumped-π circuit can be corrected by above defined 
compensation currents. These corrections enable the omition 
of the current sources from the sequence circuits in Fig. 5a-c 
and obtaining the final decoupled, compensated, scaled, 
unbalanced line model in sequence domain depicted in Fig. 6. 

 
 
 
 
 
 
 

 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
The 6x6 node-admittance matrix representing the unbalanced 
line in sequence domain has the following form: 
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This matrix is sparse and has the same form as the 6x6 node-
admittance matrix representing balanced line in sequence 
domain. 

V. LOAD MODEL 
 

Usually, load active and reactive powers for each phase (a, b 
and c) are specified. For example in the power system bus k, these 
powers are denoted as:  
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The individual complex currents and powers of the loads in 

positive-, negative and zero-sequence can be derived if the phase 
complex voltages abc

kU  or sequence complex voltages dio
kU  are on 

disposal. The phases injected complex currents in the bus k, are: 
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With known complex currents in phase domain and inverse 

transformation matrix [2], injected complex currents in node k in 
any sequence circuit are expressed as:  
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Matrix Eq. (14) represents the load model in sequence domain. 
Also, using the sequence complex voltages and currents, the 
sequence complex powers can be calculated. Thus, the load model 
can be presented through injected sequence complex powers. 
 

VI. CONCLUSION 
 
 In this paper the procedure of power system balanced or 
unbalanced elements modeling in sequence domain is 
presented. Applying the “New scaling concept”, the phase 
shifts introduced by the ideal transformers with complex turn 
ratio are eliminated from the sequence circuits. With current 
compensation procedure the unbalanced line is modeled with 
decoupled sequence models. Thus, generator, transformer and 
line decoupled models are represented with 6x6 node-
admittance sparse matrices. Injected sequence complex 
currents or powers in the busbar where the load is connected 
represent the load model. These elements models enable 
unbalanced power system modeling with three sequence, 
decoupled circuits. 
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Fig. 6. Unbalanced line decoupled, compensated, scaled positive-
(a), negative- (b) and zero-sequence (c) lumped-π circuits. 
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