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Abstract - In this paper, a simplified linearized dynamic model 

for fast assessment of voltage collapse is developed. The 
simplification was made under assumption that the voltages at 
generator nodes are constant, which means that only power 
changes at load nodes are considered in analysis. Dimensions of 
the state matrix, which eigenvalues are used for voltage collapse 
assessment, decrease under this assumption. Appropriate 
transformations of linearized state matrix prove that for this 
model knowing of values of the dynamical load change time 
constants are not required.  
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I. INTRODUCTION 
Analysis of faults caused by voltage collapse, and its 

consequences, pointed out this phenomenon is very complex 
and influenced by many factors. Because of this complexity, 
for a long time this phenomenon occupies interest of 
researchers, what verify a number of published papers. 
Different approaches are used in voltage collapse researches, 
depending on: emphasised factors, used models of 
components, and introduced simplifications. In general, all 
approaches for analysis of voltage collapse and voltage 
(in)stability can be classified into two basic groups: static and 
dynamic. 

Linearized models are often used in both static [1,2,5,6] 
and dynamic [1,2,7-10] approaches. Eigenvalues of related 
linearized matrix are then used for voltage collapse presence 
indication. 

In this paper, a simplified linearized dynamic model for 
voltage collapse assessment is formed. This model is obtained 
under assumption that voltages at generator nodes are 
constant. That means that only power changes at load nodes 
can be considered in analysis. Starting from this model, the 
voltage collapse is assessed by the eigenvalues of linearized 
state matrix. Dimensions of this matrix are equal to the total 
number of load nodes. 

II. DYNAMIC OF POWER CHANGE AT LOAD NODES 

The system under consideration has m generator and n load 
nodes. Dynamic of load changes at the i-th node can be 
expressed by following two differential equations [8,10]: 
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where LiP  is active load at i-th node, LiQ  reactive load at i-th 
node, iT  dynamical load change time constant at i-th node, 

)V(f iPi  dependence of the active load at i-th node as a 
function of the voltage iV , and )V(f iQi  dependence of the 
reactive load at i-th node as a function of the voltage iV . 

Time constant iT  depends on the load structure. Major 
factor that influences on this value is time constant of 
asynchronous machine, which represents loads in proposed 
model. Value of iT  also depends on time constant of tap 
changing transformer regulator, if it is presented at load node. 
Determination of the time constant iT  is very complex 
problem for each particular case. Proposed approach does not 
require knowing of time constants values iT , which can be 
considered as an advantage. 

Functional relations of Pif  and Qif  are static voltage 
characteristics of load at i-th node. In previous papers [1-4], 
different methods for modeling of static voltage 
characteristics are presented. In this paper, following 
functional relations are used: 
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where (for i-th node) are pvik , qvik  voltage selfregulation 

coefficients of the active and reactive load, o
LiP  active and 

o
LiQ  reactive loads that correspond to voltage 0V . 

III. LINEARIZED DYNAMIC MODEL 
Analysis of the voltage collapse appearance, as usually, 

starts from known initial conditions, i.e. from initial values of 
the voltage phasors at all nodes. Moreover, constant 
magnitudes of voltages at the generator nodes are assumed, 
while magnitudes of the voltages at load nodes are treated as 
corresponding functions of the active and reactive loads. 
Small changes in voltages V∆ , then can be expressed as 
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Subscripts “0” in these equations denote that partial 
derivatives are calculated for steady state before changes 
appear. 

Linearizing the functions )V(f iPi  and )V(f iQi  around the 
analysed initial state and respecting Eq. (5), Eqs. (3) and (4) 
became: 
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where are )0(PLi  initial steady-state active load, )0(QLi  initial 
steady-state reactive load at the i-th node, and: 
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Power increments at i-th node can be expressed by 
following: 

 ( )0PPP LiLiLi −=∆  (8) 
 ( )0QQQ LiLiLi −=∆  (9) 

System of linearized differential equations is obtained if 
Eqs. )9()6( − are sequentially substituted in Eqs. (1) and (2). 
For the case of n load nodes network, following system of 
linearized differential equation can be written in matrix form: 
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where are I unit n×n matrix, [ ]T
Ln2L1LL PPPP ∆∆∆=∆ �  , 
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In mentioned mathematical model Eq. (10), appearance of 

voltage collapse is assessed basing on state matrix 
eigenvalues. This, practically means that the answer results 
from the solution of the following algebraic equation: 
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Using elementary transformations, the system of equations  
Eq. (11) can be reduced to following, simple form: 

0
I

V
f

V
f

P
V

V
f

Q
V

V
f

IT
P
V

V
f

T

0IT

det

0

p
1

0

Q

0L

Q

0L

Q1

0L

Q1

1

=





















λ−














∂

∂











∂
∂












∂
∂

∂
∂

−










∂
∂

∂
∂

−−










∂
∂

∂
∂

λ−−

−
−−

−

 (12)
 

From Eq. (12) is obvious that n eigenvalues are always real 
and negative ( 1T/1− , …, nT/1− ). For the voltage collapse 
assessment purpose, only sign of appropriate eigenvalues are 
needed, i.e. quantification of first n eigenvalues is not 
necessary. Then, problem is reduced to the determination of n 
eigenvalues. 
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elementary transformations, the matrix A can be written in 
following form: 
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Starting from the expressions for LQ  and LP , matrices 
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In Eq. (14), T is diagonal matrix and does not have effect 
on sign of eigenvalues. For this reason it can be neglected. 
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Then, respecting Eqs. (15) and (16), following matrix of order 
n can be used for voltage collapse assessment: 
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Elements of this matrix are simple to obtain on the basis of 
known parameters and state variables of the power system. 
Thus, a relatively simple mathematical model is formed. This 
model is very suitable for the analysis of the power system 
voltage (in)stability, because problem is reduced to 
determination of eigenvalues of a real matrix PQV, of 
relatively low order (equal to the number of load nodes). 

IV. UNIFORM MOVEMENT OF GENERATOR ROTORS 
Voltage (in)stability is practically always performed for 

characteristic post dynamic quasi-states of the power system. 
The assumption that the change in power at load nodes 
coincides with the uniform synchronous generators 
movements is there completely justified. In practice, this 
means that synchronous machines participate in total 
acceleration power acP  according to their inertia constants 
[9], i.e. 
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Thus, the condition of uniform movement of generator 
rotors reduces to the form: 

 1m,,2,1i;RR iTi −== l  (20) 
where: 
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Changes in injected power at i-th generator node, as result 
of load power changes, can be expressed as: 
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where ik  is incremental coefficient which corresponds to 
generator production at node i, and lossP  is total active power 
loses of system. 

Regarding two last expressions, for matrix PQU  can be 
finally written: 
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where: 
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Rg  is vector that shows conditions of uniform movement of 
rotors, ),V(g R Θ , and F is matrix with n identical columns: 

 [ ]T
m1m1mmm22mm11m kFkFkFkFkFkF −− −−− �  (25) 

V. TEST EXAMPLE 
Presented procedure is applied for voltage collapse 

assessment of a power system that is shown in Fig. 1 [10]. 
System consists of 13 nodes, 4 of which are generator nodes. 
The data in per unit values of the system (generated powers, 
load powers and nodes voltages) are shown in Table I. The 
voltages in same table are calculated using Newton-Raphson 
method.  
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Fig. 1 Test system for voltage collapse assessment 

The corresponding incremental factors ik  are: 2.0k1 = , 
28.0k 2 = , 22.0k 3 = , 3.0k 4 = , while factors iF  are: 
15.0F1 = , 3.0F2 = , 25.0F3 = , 3.0F4 = . 

For this initial state of the test network, and for different 
values of voltage selfregulation coefficients (with assumption 
that they are the same for all load nodes), voltage collapse 
assessment is made. 

On the basis of results shown at the Tabes I and II 
following statement can be established: eigenvalues obtained 
if influence of synchronous generators are not considered are 
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approximately equal to ones obtained when uniform 
movement of generator rotors is included. Thus, for purpose 
of voltage collapse fast assessment, it is suitable to use 
Eq. (17) for calculation matrix PQU , because of its 
simplicity comparing to Eq. (23). 

TABLE I  
GENERATED POWERS, LOAD POWERS AND VOLTAGES FOR TEST SYSTEM 

 
Node 

Generated 
power 

Load power 
 

Voltage 
magnitude 

Voltage 
phase angle

 PG(p.u.) PL(p.u.) QL(p.u.) V(p.u.) ( � ) 
1  3.5 2.0 0.826466 -24.4156 
2  0.0 0.0 0.896634 -16.8234 
3  2.12 1.1 0.859977 -23.9969 
4  0.0 0.0 0.944272 -10.657 
5  1.3 0.8 0.905786 -15.3282 
6  0.0 0.0 0.987532 -5.5421 
7  2.95 1.4 0.920813 -11.5256 
8  1.1 0.7 0.907940 -18.702 
9  0.9 0.5 1.027933 5.2696 
10 2.7   1.05 10.2098 
11 3.0   1.05 6.3277 
12 3.2   1.05 0.3605 
13 3.452   1.05 0.0 

TABLE II  
EIGENVALUES OF THE PQU MATRIX WITHOUT CONSIDERATION 

INFLUENCE OF SYNCHRONOUS GENERATORS 

 2kk qvpv ==  1kk qvpv ==  0kk qvpv ==  

λ1 -3.91786 0.004088 1.05967 
λ2 -1.42943 -0.85222 -0.69687 
λ3 -1.20511 -0.92942 -0.85522 
λ4 -1.30729 -0.89426 -0.78309 
λ5 -1.14506 -0.95008 -0.8976 
λ6 -1.0000 -1.0000 -1.0000 
λ7 -1.01299 -0.99553 -0.99083 
λ8 -1.0000 -1.0000 -1.0000 
λ9 -1.0000 -1.0000 -1.0000 

TABLE III 
EIGENVALUES OF PQU MATRIX WHEN UNIFORM MOVEMENTS OF 

SYNCHRONOUS GENERATORS IS CONSIDERED 

 2kk qvpv ==  1kk qvpv ==  0kk qvpv ==  

λ1 -3.60740 0.0082376 1.15838 
λ2 -1.40995 -0.867497 -0.72057 
λ3 -1.29324 -0.90344 -0.79801 
λ4 -1.17375 -0.93441 -0.85790 
λ5 -1.12872 -0.94556 -0.89901 
λ6 -0.99958 -0.99091 -0.98719 
λ7 -0.99958 -1.00355 -1.00498 
λ8 -1.00008 -1.0000 -1.00004 
λ9 -0.99999 -1.00003 -1.0000 

In any of two mentioned cases, when 1kk qvpv ==  or 
0kk qvpv == , one of eigenvalues is positive what indicate 

possibility of voltage collapse appearing. Test example 
verifies the fact that loads with smallest voltage selfregulation 
coefficients of active and reactive power are critical, i.e. they 
have larger contribution to voltage collapse appearance. 

However, regarding that in this approach generator nodes 
are modelled only as constant voltage sources, when critical 
points are determined, we should reconsider using some exact 
method to test if voltage collapse appears. 

VI. CONCLUSION 

The simplified linearized dynamic model for fast voltage 
collapse assessment is formed in this paper. For the case of n-
load nodes network appropriate transformations prove that 
instead of 2n, it is needed to determine only n eigenvalues. 
Additionally, knowing of the values of load time constant is 
needless also, as it is shown in this paper. Presented linearized 
dynamical model, because of introduced assumptions, can be 
used only for fast assessment of voltage collapse. When 
critical states are identified, other method should be utilised in 
order to clearly determine whether voltage collapse appears. 
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