

729

The Efficiency of the α-β Pruning Implementation in
Geniss Axon XP Chess Program

Vladan Vučković 1

Abstract -This paper is concerned with the efficiency of the

Alfa-Beta pruning technique implemented in author's chess
application. The original technique was postulated in Shannon
basic works [1],[2] and it is one of the main algorithms for
pruning the game (chess) decision tree. The author has
implemented the technique in Geniss Axon XP and prove that
technique works on many test examples. This work contains some
empirical results pointing the gross factor of the tree computing
optimization according to the theory prediction.

Keywords - The theory of games, computer chess, decision
trees.

I. INTRODUCTION

The theory of computer chess is complex connecting many
sub-domains like theory of games, decision trees, theory of
programming etc. The nature of the computer chess problem
could be explained very simply: namely, decision tree which is
the base of machine chess-playing algorithm grows
exponentially with factors depending of position, hash tables,
number of pieces on the board … The quality of computer
play strongly depends on depth of the decision tree so the
effect of the exponential explosion limits the computer chess
strength. This problem is much more noticeable when the full-
width searching procedure is used. When the pruning
techniques, like Alfa-Beta pruning is implemented the tree
growth factor drops by significant factor (Section V) but still
remain exponential. Hence, it follows that the pruning
mechanisms are able only to decrease but not to eliminate the
exponential explosion. This paper has intention to make a step
in the right direction trying to prune the decision tree as much
as possible. The main pruning method is Alfa-Beta and it is
implemented in author's Geniss Axon XP application with
some technical improvements. The results of tests prove that
the implementation of the pruning technique is able to cut the
large parts of the tree improving the computer playing strength
notably.

II. CHESS TREE SEARCHING

Chess game is started with 32 pieces (12 different
categories) on the 64 square board (Fig. 1). The game are
played by two opponents and it consists of the alternate
moving from both sides. The main goals of the game is to
mate opponent’s king, to promote pion to queen, or to achieve
enough material advance when opponent must resign.

1 Vladan Vučković is from the Faculty of Electronic Engineering,

University of Ni{, 18000 Ni{, Yugoslavia, Email:
vld@elfak.ni.ac.yu

 Game also could be drawn when both sides are agreed or
when some special situations, like stalemate, appeared on the
board. The main problem is to find the best move in every
position that might appear on the board. The process of
finding the best move implicate searching through the tree of
positions [6],[12],[16],[17]. At the root of the tree the search
for the best successor position for the player to move is
performed, at the next level the best successor position from
the standpoint of the opponent is searched, and so on.

Decision trees (DTs) are data structures used for handling
the machine tree representation of the chess game. The
structures of that type are similar to a various of decision
diagrams (DD) structures used especially for representation
and manipulation of discrete logic functions [4]. Decision
trees (DT) as a general data structure are very adjustable for
problem solving methods in computer treatment of logic
games. Each position in chess variant forms one node in chess
tree. Because of many possibly exits from the node (20 in start
position), multiple decision trees structures (MDTs) have to be
used for handling the chess tree.

If all possible moves from each node of the chess tree is
processed, this method of tree search is called full-width or
Shannon type-A searching. If one could reduce number of
successors from each DT node, tree will grow with less power
of exponentially and greater depths could be reached. This
approach is called Shannon type - B search strategy or
selective search [1],[3],[7],[8],[9],[11],[13],[15]. The main
danger connected with this strategy is that if one prunes some
good move from the search process gross error in the move
decision process could be obtained.

At each node, the postulate is that side on the move will
choose the best continuation calculated among all successors.
The white side will choose the continuation with maximum
evaluated value and the black side will choose the minimum of
the evaluation function. The process is called minimizing of
the chess tree. If the opponent choose the unsatisfactory
successor, the side on the move will have the possibility to
increase its evaluation function, so the MiniMax principle is
the most rational one to the emulate of the chess thinking
process.

III. ALFA-BETA PRUNING TECHNIQUE

The methods described in previous chapter leading to the

situation where number of positions that has to be searched by
this algorithms is WD, where W is the width of the tree
(average number of moves possible in every position) and D is
the depth of the tree. This is extremely inefficient searching
method and some test results postered in Chapter V illustrate

730

this facts. Alpha-Beta search is the significant improvement
for reducing the number of positions that has to be searched
and thus making greater depths possible in the same amount of
time [3],[5],[10],[14]. The idea is that in large parts of the tree
it is not interesting to find the exact value of a position, but
just if it is better or worse than what it has found before. The
main hypothesis, proved by Shannon, is that this pruning
technique applied on arbitrarily chess tree gives the exactly
same key move and evaluation as full-width search with
significantly chess tree reducing. The Alpha-Beta search
procedure gets two arguments, which indicate the bounds
between the exact values for a position is situated. When the
evaluation of the specific node exceeded those bounds the
searching process is aborted. The version of Alpha-Beta
shown in the following is also known as fail-soft Alpha-Beta.
It can return values outside the range alpha...beta, which can
be used as upper or lower bounds if a researching has to be
done. The next listing given in pseudo-C illustrates the nucleus
of the Alfa-Beta algorithm:

int AlphaBeta (pos, depth, alpha, beta)
{
 if (depth == 0) return Evaluate(pos);
 best = -INFINITY;
 succ = Successors(pos);
 while (not Empty(succ) && best < beta)
 {
 pos = RemoveOne(succ);
 if (best > alpha) alpha = best;
 value = -AlphaBeta(pos, depth-1, -beta, -alpha);
 if (value > best) best = value;
 }
 return best;
}

The largest gain of the algorithm is reached when at each
level of the tree the best successor position is searched first,
because this position will either be part of the principal
variation or it will cause a cutoff to be as early as possible.
Under optimal circumstances Alpha-Beta still has to search
W(D+1)/2 + WD/2 - 1 positions. This is much less than classic
MiniMax, but still exponential. It allows reaching about twice
the depth in the same amount of time. More positions will
have to be searched if move ordering is not perfect [3]. The
advanced implementation of the algorithm (implemented in
Geniss Axon XP) could save further calculation time.

IV. GENISS AXON XP APPLICATION

The Geniss Axon XP is the latest version of the authors
Geniss applications designed to play classical chess. The
predecessors are Geniss E.C.P. [18] and Geniss Axon 2002.
The author has also developed the Geniss Mate Solver [19] for
the problem chess. The main window of the application is
postered in the next figure:

Fig 1. The main window of the Geniss Axon XP application

The application is used to perform serious of tests with and
without Alfa-Beta pruning mechanism. The source code of the
application is altered for both test situations.

V. COMPARATION RESULTS

In this chapter a serious of tests are performed with
intention to determinate the empirical data proving the
significant search reducing by using Alfa-Beta technique. The
Geniss application runs on Pentium I 200 MHz machine (64
Mb RAM). The test results are divided into four tables (Tables
I-IV) . Tables I and II present the data generated by the full-
width searcher with and without search extensions. The notion
of extension overalls all searching beyond the search horizon -
search depth. The extensions usually do some checks, captures
or promotion moves. When the extensions are off, the searcher
performs the classical Shannon type-A searching procedure
(Table II). Tables III and IV content searching results when
Alfa-Beta algorithm is set on. The tables columns have the
following meanings:

• depth - search depth (in plys),
• positions - positions performed in tests,
• time - time consumption,
• move - the key move found by searching on specific

depth,
• evaluation - the computed evaluation,
• T.G.C. (tree growth factor) - this factor shows the

quotient between the number of positions performed on
successive depths D and (D-1).

The test position is chosen by consulting the theory of

chess combinations and it is extracted from the famous
Steinitz-Bardeleben game played in Hastings 1895. The key
position is diagrammed in Fig 2. The grandmaster Steinitz has
played the power sacrifice move E1E7!! leading to the
ultimate victory. The following data demonstrate how the
machine handle the position:

731

Fig 2. The test position from the Steinitz-Bardeleben game

played in Hastings 1895.

TABLE I
TABLE SHOWS COMPARATION RESULTS OF THE POSITION

ANALYZING WITHOUT ALFA-BETA PRUNING (WITH EXTENSIONS)

De-
pth

Positions Time Move Eval
uatio

n

T.G.
F

1 6823 1 sec. G4D7 +0.24 -
2 54237 6 sec. G4D7 +0.24 7.949
3 245223 28 sec. G4D7 +0.01 4.520
4 1154725 2:08

sec.
G5H7! +1.22 4.708

5 3208487 6:59
sec.

G5D7! -0.05 2.778

TABLE II

TABLE SHOWS COMPARATION RESULTS OF THE POSITION
ANALYZING WITHOUT ALFA-BETA PRUNING (NO EXTENSIONS)

De-
pth

Positions Time Move Evalu
ation

T.G.F
.

1 1491 << 1 sec. G4D7 -0.56 -
2 11275 1 sec. C1C8 +2.38 7.562
3 60530 8 sec. G4D7 -0.09 5.368
4 259719 31 sec. C1C8 +2.27 4.290
5 3208487 6:50 sec. G4D7 -0.05 12.35

TABLE III
TABLE SHOWS COMPARATION RESULTS OF THE POSITION

ANALYZING WITH ALFA-BETA PRUNING (WITH EXTENSIONS)

De-
pth

Positions Time Move Evalu
ation

T.G.F.

1 354 << 1
sec.

G4D7 +0.24 -

2 1217 << 1
sec.

G4D7 +0.24 3.437

3 2772 1 sec. G4D7 +0.01 2.277
4 7074 1 sec. G5H7! +1.22 2.551
5 22915 3 sec. G5H7! +1.07 3.239
6 58901 6 sec. G5H7! +1.04 2.570
7 115213 14 sec. G5H7! +0.96 1.956
8 259312 31 sec. E1E7!! +2.97 2.250
9 569235 1:07

sec.
E1E7!! +2.32 2.195

10 1428925 2:43
sec.

E1E7!! +3.14 2.521

TABLE IV
TABLE SHOWS COMPARATION RESULTS OF THE POSITION
ANALYZING WITH ALFA-BETA PRUNING (NO EXTENSIONS)

De-
pth

Positions Time Move Evalu
ation

T.G.F.

1 131 - G5D7 -0.56 -
2 603 - C1C8 +2.38 4.603
3 1518 1 sec. G4D7 -0.09 2.517
4 3168 1 sec. C1C8 +2.27 2.086
5 12365 2 sec. G4D7 -0.05 3.903
6 25989 4 sec. G5H7 +1.07 2.101
7 52843 8 sec. G5H7 +0.96 2.033
8 99129 14 sec. G5H7 +1.10 1.876
9 311137 44 sec. E1E7! +2.13 3.139

10 581238 1:26
sec.

E1E7! +3.36 1.868

11 1123945 2:43
sec.

E1E7! +2.42 1.933

12 2914191 6:42
sec.

E1E7! +2.98 2.593

732

The analyzes of the presented data affirm the following
conclusions:

• Table I - The full-width searching with extensions is very

stable. The sub-dominant key move G5H7! is found at
depth=4. The tree growth is extremely exponential with
average T.G.F. 4.980.

• Table II - The full-width searching without extensions is

unstable. The sub-dominant key move G5H7! is found at
depths=1,3,7, but altered at other depths. The tree growth
is extremely exponential with average T.G.F. 7.390.

• Table III - The Alfa-Beta full-width searching with

extensions is very stable. The sub-dominant key move
G5H7! is found at depth=4 and the dominant move
E1E7!! found at depth=8 and remain stable in further. The
tree growth is exponential with average T.G.F. 2.553
which is significantly lower then classical full-width
searcher (Table I).

• Table IV - The Alfa-Beta full-width searching without

extensions is unstable at lower depths but stabilized at
depths >=6 . The sub-dominant key move G5H7! is found
at depth=6 and the dominant move E1E7!! found at
depth=9 and remain stable in further. The tree growth is
exponential with average T.G.F. 2.600 which is similar to
the previous results (Table III). One could notice that the
key moves are found 2 and 1 ply deeper when no
extensions are performed.

VI. CONCLUSION

The Alfa-Beta pruning mechanism represents the
fundament of almost all today's chess programs (including
author's Geniss Axon XP). The main intention of this paper is
to present some quantitative data in goal to dispose the precise
contribution of the Alfa-Beta to the chess tree searching. The
tables and the analyzes in Chapter V affirm that Alfa-Beta has
massive tree pruning ability with factors up to 1:140 for
searching with extensions (depth=5) and 1:260 for searching
without extensions at the same depth. The search extensions
add some stability into the searching process. The key moves
are found a ply or two earlier. Also, the extensions generate a
huge number of positions depending on tactical character of
them. For the test performed in previous chapter, at depth=10,
the extensions applied about 145% to the searched positions
but relieve program to find the solution earlier (31 sec,
depth=8 compared to 44 sec, depth=9 without extensions).

The general conclusion is that regular and fast search
algorithm must contain Alfa-Beta pruning mechanism
implemented in program nucleus supported by capture/check
extensions and good move-ordering generator. The classical
full-width algorithms without these mechanisms are irrelevant
for the modern computer search researching.

REFERENCES

[1] Claude E. Shannon “Programming a computer for playing

chess”, first presented at the National IRE Convention,
March 9, 1949. New York, U.S.A

[2] Claude E. Shannon “A chess-playing machine”, reprinted
with permission, Scientific American, 1950, USA

[3] Peter W. Fray Chess Skill in Man and Machine, texts and
monographs in computer science, Springer-Verlag,
1977,1978, New York, USA

[4] Milošević, R. S. Stanković, C. Moraga “Fast reordering
strategies for BDDs”, University of Dortmund, 2000.,
Germany.

[5] Analysis of Alpha-Beta Pruning,
http://www.npac.syr.edu/copywrite/pcw/node351.html,
2000.

[6] Allis, L.V. Ingo Althöfer: “On pathology in game tree and
other recursion tree models” ICCA Journal, Vol. 15, No.
2, p. 80. (1992).

[7] Althöfer, I. Ralph U. Gasser: “Harnessing computational
resources for efficient exhaustive search” ICCA Journal,
Vol. 18, No. 2, pp. 85-86. (1995).

[8] Anantharaman, T.S., Campbell, M.S. and Hsu, F.
“Singular extensions: adding selectivity to brute-force
searching” ICCA Journal, Vol. 11, No. 4, pp. 135-143.
(1988).

[9] Anantharaman, T.S. “Confidently selecting a search
heuristic” ICCA Journal, Vol. 14, No. 1, pp. 3-16.
(1991).

[10] Bal, H.E. and Renesse, R. van “A summary of parallel
Alpha-Beta search results” ICCA Journal, Vol. 9, No. 3,
pp. 146-149. (1986).

[11] Bettadapur, P. “Influence of ordering on capture search”
ICCA Journal, Vol. 9, No. 4, pp. 180-188. (1986).

[12] Bruin, A. de, Pijls, W. and Plaat, A. “Solution trees as a
basis for game-tree search” ICCA Journal, Vol. 17, No. 4,
pp. 207-219. (1994).

[13] Buro, M. “ProbCut: an effective selective extension of the
- algorithm” ICCA Journal, Vol. 18, No. 2, pp. 71-76.
(1995).

[14] Junghanns, A. “Are there practical alternatives to Alpha-
Beta?” ICCA Journal, Vol. 21, No. 1, pp. 14-32. (1998).

[15] Kaindl, H., Horacek, H. and Wagner, M. “Selective
search versus brute force” ICCA Journal, Vol. 9, No. 3,
pp. 140-145. (1986).

[16] Marsland, T.A. “A review of game-tree pruning” ICCA
Journal, Vol. 9, No. 1, pp. 3-19. (1986).

[17] Walker, A.N. “Uniqueness in game trees” ICCA Journal,
Vol. 7, No. 4, pp. 193-202. (1984).

[18] Vuckovic, Vladan "The Basic Elements of the Chess
Program Implementation", Proceedings of a Workshop on
Computational Intelligence and Information
Technologies, pg. 17-23, June 20-21. 2001.

[19] Vuckovic, Vladan "Decision Trees and Search Strategies
in Chess Problem Solving Applications", Proceedings of
a Workshop on Computational Intelligence and
Information Technologies, pg. 141-159, February 27.
2001.

	Back to WS1
	Main menu

