
 

729 

The Efficiency of the α-β Pruning Implementation in 
Geniss Axon XP Chess Program 
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Abstract -This paper is concerned with the efficiency of the 

Alfa-Beta pruning technique implemented in author's chess 
application. The original technique was postulated in Shannon 
basic works [1],[2] and it is one of the main algorithms for 
pruning the game (chess) decision tree. The author has 
implemented the technique in Geniss Axon XP and prove that 
technique works on many test examples. This work contains some 
empirical results pointing the gross factor of the tree computing 
optimization according to the theory prediction. 

Keywords - The theory of games, computer chess, decision 
trees. 
 

I.  INTRODUCTION 
 

The theory of computer chess is complex connecting many 
sub-domains like theory of games, decision trees, theory of 
programming etc. The nature of the computer chess problem 
could be explained very simply: namely, decision tree which is 
the base of machine chess-playing algorithm grows 
exponentially with factors depending of position, hash tables, 
number of pieces on the board … The quality of computer 
play strongly depends on depth of the decision tree so the 
effect of the exponential explosion limits the computer chess 
strength. This problem is much more noticeable when the full-
width searching procedure is used. When the pruning 
techniques, like Alfa-Beta pruning is implemented the tree 
growth factor drops by significant factor (Section V) but still 
remain exponential. Hence, it follows that the pruning 
mechanisms are able only to decrease but not to eliminate the 
exponential explosion. This paper has intention to make a step 
in the right direction trying to prune the decision tree as much 
as possible. The main pruning method is Alfa-Beta and it is 
implemented in author's Geniss Axon XP application with 
some technical improvements. The results of tests prove that 
the implementation of the pruning technique is able to cut the 
large parts of the tree improving the computer playing strength 
notably. 
 

II.  CHESS TREE SEARCHING 
 

Chess game is started with 32 pieces (12 different 
categories) on the 64 square board (Fig. 1). The game are 
played by two opponents and it consists of the alternate 
moving from both sides. The  main goals of the game is to 
mate opponent’s king, to promote pion to queen, or to achieve 
enough material advance when opponent must resign. 
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 Game also could be drawn when both sides are agreed or 
when some special situations, like stalemate, appeared on the 
board. The main problem is to find the best move in every 
position that might appear on the board. The process of 
finding the best move  implicate searching through the tree of 
positions [6],[12],[16],[17]. At the root of the tree the  search 
for the best successor position for the player to move is 
performed, at the next level the best successor position from 
the standpoint of the opponent is searched, and so on.  

Decision trees (DTs) are data structures used for handling  
the machine tree representation of the chess game. The 
structures of that type are similar to a various of decision 
diagrams (DD) structures used especially for representation 
and manipulation of discrete logic functions [4]. Decision 
trees (DT) as a general data structure are very adjustable for 
problem solving methods in computer treatment of logic 
games. Each position in chess variant forms one node in chess 
tree. Because of many possibly exits from the node (20 in start 
position), multiple decision trees structures (MDTs) have to be 
used for handling the chess tree. 

If all possible moves from each node of the chess tree is 
processed, this method of tree search is called full-width or 
Shannon type-A searching. If one could reduce number of 
successors from each DT node, tree will grow with less power 
of exponentially and greater depths could be reached. This 
approach is called Shannon type - B search strategy or 
selective search [1],[3],[7],[8],[9],[11],[13],[15].  The main 
danger connected with this strategy is that if one prunes some 
good move from the search process gross error in the move 
decision process could be obtained.  

At each node, the postulate is that side on the move will 
choose the best continuation calculated among all successors. 
The white side will choose the continuation with maximum 
evaluated value and the black side will choose the minimum of 
the evaluation function. The process is called minimizing of 
the chess tree. If the opponent choose the unsatisfactory 
successor, the side on the move will have the possibility to 
increase its evaluation function, so the MiniMax principle is 
the most rational one to the emulate of the chess thinking 
process.  

 
III.  ALFA-BETA PRUNING TECHNIQUE 

 
The methods described in previous chapter leading to the 

situation where number of positions that has to be searched by 
this algorithms is WD, where W is the width of the tree 
(average number of moves possible in every position) and D is 
the depth of the tree. This is extremely inefficient searching 
method and some test results postered in Chapter V illustrate 
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this facts. Alpha-Beta search is the significant improvement 
for reducing the number of positions that has to be searched 
and thus making greater depths possible in the same amount of 
time [3],[5],[10],[14]. The idea is that in large parts of the tree 
it is not interesting to find the exact value of a position, but 
just if it is better or worse than what it has found before. The 
main hypothesis, proved by Shannon, is that this pruning 
technique applied on arbitrarily chess tree gives the exactly 
same key move and evaluation as full-width search with 
significantly chess tree reducing. The Alpha-Beta search 
procedure gets two arguments, which indicate the bounds 
between the exact values for a position is situated. When the 
evaluation of the specific node exceeded those bounds the 
searching process is aborted. The version of Alpha-Beta 
shown in the following is also known as fail-soft Alpha-Beta. 
It can return values outside the range alpha...beta, which can 
be used as upper or lower bounds if a researching has to be 
done. The next listing given in pseudo-C illustrates the nucleus 
of the Alfa-Beta algorithm:  
 
int AlphaBeta (pos, depth, alpha, beta) 
{ 
    if (depth == 0) return Evaluate(pos); 
    best = -INFINITY; 
    succ = Successors(pos); 
    while (not Empty(succ) && best < beta) 
    { 
        pos = RemoveOne(succ); 
        if (best > alpha) alpha = best; 
        value = -AlphaBeta(pos, depth-1, -beta, -alpha); 
        if (value > best) best = value; 
    } 
    return best; 
} 
 

The largest gain of the algorithm is reached when at each 
level of the tree the best successor position is searched first, 
because this position will either be part of the principal 
variation or it will cause a cutoff to be as early as possible. 
Under optimal circumstances Alpha-Beta still has to search 
W(D+1)/2 + WD/2 - 1 positions. This is much less than classic 
MiniMax, but still exponential. It allows reaching about twice 
the depth in the same amount of time. More positions will 
have to be searched if move ordering is not perfect [3]. The 
advanced implementation of the algorithm (implemented in 
Geniss Axon XP) could save further calculation time. 
 

IV.  GENISS AXON XP APPLICATION 
 

The Geniss Axon XP is the latest version of the authors 
Geniss applications designed to play classical chess. The 
predecessors are Geniss E.C.P. [18] and Geniss Axon 2002. 
The author has also developed the Geniss Mate Solver [19] for 
the problem chess. The main window of the application is 
postered in the next figure: 
 

 
 

Fig 1. The main window of the Geniss Axon XP application 
 
The application is used to perform serious of tests with and 
without Alfa-Beta pruning mechanism. The source code of the 
application is altered for both test situations. 
 

V.  COMPARATION RESULTS 
 

In this chapter a serious of tests are performed with 
intention to determinate the empirical data proving the 
significant search reducing by using Alfa-Beta technique. The 
Geniss application runs on Pentium I 200 MHz machine (64 
Mb RAM). The test results are divided into four tables (Tables 
I-IV) . Tables I and II present the data generated by the full-
width searcher with and without search extensions. The notion 
of extension overalls all searching beyond the search horizon - 
search depth. The extensions usually do some checks, captures 
or promotion moves. When the extensions are off, the searcher 
performs the classical Shannon type-A searching procedure 
(Table II). Tables III and IV content searching results when 
Alfa-Beta algorithm is set on. The tables columns have the 
following meanings: 
 
• depth - search depth (in plys), 
• positions - positions performed in tests,  
• time - time consumption, 
• move - the key move found by searching on specific 

depth, 
• evaluation - the computed evaluation, 
• T.G.C. (tree growth factor) - this factor shows the 

quotient between the number of positions performed on 
successive depths D and (D-1). 

 
The test position is chosen by consulting the theory of 

chess combinations and it is extracted from the famous 
Steinitz-Bardeleben game played in Hastings 1895. The key 
position is diagrammed in Fig 2. The grandmaster Steinitz has 
played the power sacrifice move E1E7!! leading to the 
ultimate victory. The following data demonstrate how the 
machine handle the position: 
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Fig 2. The test position from the Steinitz-Bardeleben game 

played in Hastings 1895. 
 
 

TABLE  I 
TABLE SHOWS COMPARATION RESULTS OF THE POSITION 

ANALYZING WITHOUT ALFA-BETA PRUNING (WITH EXTENSIONS) 
 
De-
pth 

Positions Time Move Eval
uatio

n 

T.G.
F 

1 6823 1 sec. G4D7 +0.24 - 
2 54237 6 sec. G4D7 +0.24 7.949 
3 245223 28 sec. G4D7 +0.01 4.520 
4 1154725 2:08 

sec. 
G5H7! +1.22 4.708 

5 3208487 6:59 
sec. 

G5D7! -0.05 2.778 

 
TABLE  II 

TABLE SHOWS COMPARATION RESULTS OF THE POSITION 
ANALYZING WITHOUT ALFA-BETA PRUNING (NO EXTENSIONS) 

 
De-
pth 

Positions Time Move Evalu 
ation 

T.G.F
. 

1 1491 << 1 sec. G4D7 -0.56 - 
2 11275 1 sec. C1C8 +2.38 7.562 
3 60530 8 sec. G4D7 -0.09 5.368 
4 259719 31 sec. C1C8 +2.27 4.290 
5 3208487 6:50 sec. G4D7 -0.05 12.35 

 
 
 
 

 
 
 
 

 
 

TABLE  III 
TABLE SHOWS COMPARATION RESULTS OF THE POSITION 

ANALYZING WITH ALFA-BETA PRUNING (WITH EXTENSIONS) 
 
 
De-
pth 

Positions Time Move Evalu 
ation 

T.G.F.

1 354 << 1 
sec. 

G4D7 +0.24 - 

2 1217 << 1 
sec. 

G4D7 +0.24 3.437 

3 2772 1 sec. G4D7 +0.01 2.277 
4 7074 1 sec. G5H7! +1.22 2.551 
5 22915 3 sec. G5H7! +1.07 3.239 
6 58901 6 sec. G5H7! +1.04 2.570 
7 115213 14 sec. G5H7! +0.96 1.956 
8 259312 31 sec. E1E7!! +2.97 2.250 
9 569235 1:07 

sec. 
E1E7!! +2.32 2.195 

10 1428925 2:43 
sec. 

E1E7!! +3.14 2.521 

 
 
 

TABLE  IV 
TABLE SHOWS COMPARATION RESULTS OF THE POSITION 
ANALYZING WITH ALFA-BETA PRUNING (NO EXTENSIONS) 

 
 
De-
pth 

Positions Time Move Evalu 
ation 

T.G.F. 

1 131 - G5D7 -0.56 - 
2 603 - C1C8 +2.38 4.603 
3 1518 1 sec. G4D7 -0.09 2.517 
4 3168 1 sec. C1C8 +2.27 2.086 
5 12365 2 sec. G4D7 -0.05 3.903 
6 25989 4 sec. G5H7 +1.07 2.101 
7 52843 8 sec. G5H7 +0.96 2.033 
8 99129 14 sec. G5H7 +1.10 1.876 
9 311137 44 sec. E1E7! +2.13 3.139 

10 581238 1:26 
sec. 

E1E7! +3.36 1.868 

11 1123945 2:43 
sec. 

E1E7! +2.42 1.933 

12 2914191 6:42 
sec. 

E1E7! +2.98 2.593 
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The analyzes of the presented data affirm the following 
conclusions: 
 
• Table I - The full-width searching with extensions is very 

stable. The sub-dominant key move G5H7! is found at 
depth=4. The tree growth is extremely exponential with 
average T.G.F.  4.980. 

 
• Table II - The full-width searching without extensions is 

unstable. The sub-dominant key move G5H7! is found at 
depths=1,3,7, but altered at other depths. The tree growth 
is extremely exponential with average T.G.F.  7.390. 

 
• Table III - The Alfa-Beta full-width searching with 

extensions is very stable. The sub-dominant key move 
G5H7! is found at depth=4 and the dominant move 
E1E7!! found at depth=8 and remain stable in further. The 
tree growth is exponential with average T.G.F.  2.553 
which is significantly lower then classical full-width 
searcher (Table I). 

 
• Table IV - The Alfa-Beta full-width searching without 

extensions is unstable at lower depths but stabilized at 
depths >=6 . The sub-dominant key move G5H7! is found 
at depth=6 and the dominant move E1E7!! found at 
depth=9 and remain stable in further. The tree growth is 
exponential with average T.G.F.  2.600 which is similar to 
the previous results (Table III). One could notice that the 
key moves are found 2 and 1 ply deeper when no 
extensions are performed. 

 
 

VI.  CONCLUSION 
 

The Alfa-Beta pruning mechanism represents the 
fundament of almost all today's chess programs (including 
author's Geniss Axon XP). The main intention of this paper is 
to present some quantitative data in goal to dispose the precise 
contribution of the Alfa-Beta to the chess tree searching. The 
tables and the analyzes in Chapter V affirm that Alfa-Beta has 
massive tree pruning ability with factors up to 1:140 for 
searching with extensions (depth=5) and 1:260 for searching 
without extensions at the same depth. The search extensions 
add some stability into the searching process. The key moves 
are found a ply or two earlier. Also, the extensions generate a 
huge number of positions depending on tactical character of 
them. For the test performed in previous chapter, at depth=10, 
the extensions applied about 145% to the searched positions 
but relieve program to find the solution earlier (31 sec, 
depth=8 compared to 44 sec, depth=9 without extensions). 

The general conclusion is that regular and fast search 
algorithm must contain Alfa-Beta pruning mechanism 
implemented in program nucleus supported by capture/check 
extensions and good move-ordering generator. The classical 
full-width algorithms without these mechanisms are irrelevant 
for the modern computer search researching.  
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