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Nonlinear/non-Gaussian sequential estimation  
applied to neural networks: Theory 
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Abstract - In this paper we consider a theoretical background of 
sequential Monte Carlo methods for nonlinear/non-Gaussian 
sequential estimation. Considered algorithms are applied to the 
state estimation of the nonlinear state space model in order to 
assess their performance quality and to stress the problem of 
degeneracy of the basic algorithm. 
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I. INTRODUCTION 

The problem of estimating the hidden state of a system us-
ing observations which arrive sequentially in time is very im-
portant in many fields of science, engineering and finance. 
The solution begins by modeling the state evolution and noise 
in the measurements. The resulting, so-called, state space 
model usually exhibits non-linear, non-Gaussian behavior.  

The State Space Model (SSM) consists of two parts: The 
first one describes the evolution of the state ,...}2,1,{ =kxk : 

),( 1 kkkk dxfx −=  (1) 

where xdx nnn
k RRf →×:  is in general nonlinear function, 

and ,...}2,1,{ =kdk  is an i.i.d. process noise sequence, dx nn ,  
are dimensions of the state and process noise vectors respec-
tively. The second one is the measurement model: 

),( kkkk vxhy =  (2) 

where yvx nnn
k RRh →×:  is in general a nonlinear function, 

and ,...}2,1,{ =kvk  is an i.i.d. measurement noise sequence, 
vy nn ,  are dimensions of the measurement and measurement 

noise vectors respectively. 
SSM of Neural Networks dynamic. Sequential estima-

tion of neural networks (NN) using the state space model of 
networks dynamic and the extended Kalman filter (EKF) as an 
estimator has been thoroughly researched by several authors 
[9,2]. We have considered feed-forward [6] as well as recur-
rent network adaptation using EKF [7]. Due to the lack of 
space we give here as an example only the SSM model of a 
recurrent neural network. The transition equation describes 
the evolution of the network parameters and outputs while the 
measurement equation 
__________________________ 
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describes the influence of the measurement noise: 
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where ks  is the sn -dimensional network output; kw is the 
wn -dimensional vector of network parameters. )(⋅kf  is the 

nonlinear mapping realized by the recurrent network; ksd , , 
kwd ,  are the process noises and kv  is the measurement noise. 

The hidden state of the network is defined as an augmented 
vector of network outputs and parameters. 

Beside fast learning and built-in capability to deal with the 
time-varying parameters, we have demonstrated the possibil-
ity to unify the parameter and structure adaptation of the NN 
under the same algorithm based on EKF [6,7]. However ,this 
approach is based on the local linearization of the SSM, as 
well as Gaussian approximation of the relevant densities. In 
this paper we consider a theoretical background of sequential 
Monte Carlo algorithms as an alternative approach to the 
problem of neural network estimation. Considered algorithms 
are applied in the state estimation of nonlinear SSM in order 
to assess their performance quality and to stress the problem 
of degeneracy of the basic algorithm.  

II. BAYESIAN ESTIMATION  
USING IMPORTANCE SAMPLING 

Let us consider the problem of evaluating the hidden state 
process ,...}1,0,{:0 == kxx kk  using the observations 

,...}1,0,{:0 == kyy kk . In a Bayesian framework all relevant 
information on kx :0 is included in the posterior pdf 

)( :0:0 kk yxp . The optimal (with respect to any criterion) es-
timation of the state and the measure of the accuracy of the 
estimate may be obtained from it. Assuming that the initial 
pdf, )()( 000 xpyxp = , is available ( 0y  being the set of no 
measurements) recursively in time, the density )( :0:0 kk yxp  
including the marginal filtering pdf )( :0 kk yxp  and the ex-
pectation:  

kkkkkkkyxp xdyxpxfxf
kk :0:0:0:0:0)( )()()]([E

:1:0 ∫=  (4) 

for any )( 1:0 Kk yxp -integrable RRf xnk
k →⋅+ )1(: . Taking 

into account that the state corresponds to a Markov process: 
∏ = −= k

j jjk xxpxpxp 1 10:0 )()()( , and the observations are 
conditionally independent given the states 

∏ == k
j jjkk xypxyp 1:0:1 )()( , the recursive formula for 

)( :0:0 kk yxp  can be obtained: 
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Unfortunately, in general the normalizing constant 
)( 1:0 −kk yyp  cannot be obtained analytically. A possible 

numerical solution consists of using a Monte Carlo integration 
method. 
Perfect Monte Carlo simulations. Let us assume that we are 
able to simulate N i.i.d. random samples },...2,1 ;{ )(

:0 Nix i
k = ac-

cording to )( :0:0 kk yxp . An empirical estimate of this pdf is 
given by: Nxyxp N

i kxkk i
k

})d({)(ˆ 1 :0:0:0 )(
:0

∑== δ  and the following 
estimate of expectation (4) is obtained: 

∑
=

=
N

i

i
kkkkyxp xf

N
xf

kk
1

)(
:0:0)( )(1)]([E

:0:0
 (6) 

According to the strong law of the large numbers (SLLN) 
one obtains: 

)]([E)]([E :0)(
..

:0)( :1:0:0:0 kkyxp
N

sa
kkyxp xfxf

kkkk ∞→
→  (7) 

where a.s denotes “almost sure” convergence. However, it is 
often impossible to sample form the posterior distribution 

)( :0:0 kk yxp . In our case, that pdf is what is unknown and it 
should be estimated. 

Bayesian Importance Sampling. An alternative solution 
consists of using the importance sampling (IS) method based 
on choosing the so-called importance function, that is a pdf 

)( :0:0 kk yxπ  from which one can easily sample. A short 
description of the method follows. If 0)( :1:0 >kk yxp  implies 

0)( :0:0 >kk yxπ  then one can write: 
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where )( :0 kx∗ω  are referred to as importance weights: 

)(
)()(

:0:0

:0:0
:0

kk

kk
k yx

yxpx
π

ω =∗  (9) 

The estimate of expectation )]([E :0)( :1:0 kkyxp xf
kk

 can be 
obtained by simulating N i.i.d. samples },...2,1 ;{ )(

:0 Nix i
k =  

according to )( :0:0 kk yxπ : 
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where the importance weights },...2,1 );({ )(
:0

)( Nix i
k

i
k == ∗∗ ωω  

are given by: 
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The estimate (10) is unbiased and according to SLLN has a.s. 

convergence toward )]([E :0)( :1:0 kkyxp xf
kk

 when ∞→N . 
However, the estimate (10) requires the knowledge of the 
normalizing constant )( :0 kyp  that in general cannot be ex-
pressed in the closed form. One can solve the problem by in-
troducing unnormalized weights of the form: 

)(
)()()(

:0:0

:0:0:0
:0

kk

kkk
kk yx

xpxypx
π

ω =  (12) 

which are proportional to the “true” importance weights 
∗∝ kk ωω . The normalizing constant )( :0 kyp  can be rewritten 

in the following form: 

kkkkkk xdxyxyp :0:0:0:0:0 )()()( ∫= πω  (13) 

By substituting (13) and (12) in (8), we obtain: 
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and the estimate of )]([E :0)( :1 kkyp xf
k⋅  is given by: 
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where )(~ i
kω  are the normalized importance weights: 

1
1

)()()( )(~ −
=∑= N

j
i

k
i

k
i

k ωωω  (16) 

The “true” importance weights )*(i
kω  have been replaced by 

the following estimate )()*( ~ˆ i
k

i
k Nωω = . 

III. MONTE CARLO FILTER USING  
SEQUENTIAL IMPORTANCE SAMPLING 

The aim of sequential Monte Carlo estimation is to obtain 
an estimate of )( :0:0 kk yxp , and to be able to propagate it in 
time without modifying subsequently the past simulated tra-
jectories },...,1;{ )(

:0 Nix i
k = . The following form of the impor-

tance function makes such scenario possible: 

∏
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 (17) 

By substituting (17) in (12) we obtain an expression for 
computing the importance weights recursively in time: 

),(
)()()()(

:1:0

1
1:01:0

kkk

kkkk
kkkk yxx

xxpxypxx
π

ωω −
−−=  (18) 

If ),(),( 1:11:0 kkkkkk yxxyxx −− = ππ  and if only a filter-
ing pdf )( :1 kk yxp  is regarded, the path )(

1:0
i
kx −  can be dis-

carded, as well as the history of observations 1:0 −ky . The un-
normalized importance weights are given by: 
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Using sampled particles )(~ )(
,1

)(
k

i
kk

i
k yxxx −π  and corre-

sponding normalized weights 1
1

)()()( )(~ −
=∑= N

j
i

k
i

k
i

k ωωω , 
Ni ,...1= , the posterior filtering density is approximated by: 
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:0 )(~)(ˆ δω  (20) 

and the estimate of )]([)( :0 kkyp xfE
k⋅  is obtained as: 
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IV. DEGENERACY OF THE SIS ALGORITHM 

The best possible choice for importance function 
)( :0:0 kk yxπ  is the posterior density of interest )( :0:0 kk yxp . 

In that case the mean and the variance of importance weights 
are respectively 1][E )( :0

=∗
⋅ ky k

ωπ and 1)(var )( :0
=∗

⋅ ky k
ωπ . 

However, the unconditional variance of the importance 
weights, obtained when the importance function is defined by 
(17), increases over time [3]. The proof for this statement is 
obtained by extending the Kong-Liu-Wang theorem [4] to the 
case of the importance function of the form (17) [3]. 

Practically this increase of the variance means that one of 
the importance weights will tend to one while other will tend 
to zero. Thus, the effective particle size reduces from N to 
almost 1 and the large portion of the computational power will 
be wasted on updating particles whose contribution to the 
approximation to )( :0 kk yxp  is zero. The most common 
strategies to deal with this problem are the proper selection of 
importance function and resampling. 

Selection of the importance function. The degeneracy of 
the SIS algorithm could be limited by selecting the importance 
function which will minimize the variance of the importance 
weights conditional upon the simulated trajectory )(

1:0
i
kx −  and 

the observations ky :0 . Doucet [3] proved that importance 
function ),( )(

1 k
i

kk yxxp − , introduced by Zaritski et all. [9] 
minimizes the variance of the importance weights )(i

k
∗ω  con-

ditional upon )(
1:0

i
kx −  and ky :0 . For this distribution unnormal-

ized importance weights (12) are given by: 
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Application of the optimal importance function requires 
sampling form ),( )(

1 k
i

kk yxxp −  and evaluation, at least up to 
the proportionality, of )( )(

1
i

kk xyp − : 

∫ −− = k
i

kkkk
i

kk dxxxpxypxyp )()()( )(
1

)(
1  (23) 

Unfortunately, the analytical solution of the integral (23) in 
the general case cannot be obtained. However, as it was 
pointed out in [3], there is an important class of the state space 
models for which an analytical solution of (23) exists. As an 

example, the following state space model is considered. 
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The optimal importance function for SSM (25) is the Gaussian 
density: 

),(),( 1 kkkkk xNyxxp Σ=−  (25) 

where 
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Density )( 1−kk xyp  is obtained as: 
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In case that SSM is given as: 

),0(~ ,)(
),0(~ ,)( 1

kkkkkk
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QNddxfx
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+= −  (28) 

by linearizing observation equation in )( 1−kk xf  we obtain: 
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where ))(( 1
*

−−= kkkkk xfhyy  and )( 1
)(

−=
∂∂=

kkk xfxkkkk xxhH .  

After linearization, the suboptimal importance function for 
SSM (29) can be obtained in form of (25). 

Conventional particle filters use the transition prior as the 
importance density )(),( )(

1
)(
1

i
kkk

i
kk xxpyxx −− =π , which 

yields importance weights )( )()(
1

)( i
kk

i
k

i
k xyp−= ωω . This 

method is easy to implement but inefficient because the state 
space is explored without knowledge of the observations (the 
recent observation is not included in )( )(

1
i

kk xxp − ). The ineffi-
ciency is especially significant in case of low observation 
noise, when the likelihood is peaked and the predicted state is 
near the likelihood’s tail (in case of sudden changes in state 
dynamics). In that case the large number of particles will have 
low likelihood )( )(i

kk xyp and consequently small impor-
tance, thus they will be wasted. Examples of state estimation 
in the last section of this paper will illustrate such behavior. 

Resampling. The basic idea of resampling methods is to 
eliminate particles with small importance weights and multi-
ply particles with large importance weights in order to limit 
the degeneracy of the sequential importance sampling algo-
rithm. A new set of equally weighted samples N

i
i

k Nx 1
1)( },{ =

−  is 
obtained by resampling (with replacement) N times from an 
approximate discrete representation of )( :0 kk yxp  given by 
(20), so that )()()( ~)Pr( j

k
j

k
i

k xx ω==∗ .  
Some authors advocate the idea that resampling should be 

used only if the effective particle size is below a fixed thresh-
old [4]. Otherwise, if the importance weights are nearly equal, 
resampling reduces the number of distinctive trajectories. Ef-
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fective particle size is often used as a measure of the degener-
acy of the algorithm. It is defined in [5] as: 

N
xE

N
x

N
kyky

eff
kk

≤=
+

= ∗
⋅

∗
⋅ )]([))((var1

1

:0)(:0)( :0:0
ωω ππ

 (30) 

Instead of effN  which cannot be evaluated, in practice an es-
timate effN̂  is used. This estimate is given by 

( ) 1
1

2)( )~(ˆ −
=∑= N

i
i

keffN ω  (31) 

When effN̂  is below a fixed threshold thN , it indicates the 
degeneracy case and a resampling step should be applied.  

We have implemented and used in our experiments the 
stratified/systematic sampling described in [1]. A set of N 
points is sampled from a uniform distribution in the interval 
[0,1] each of the points a distance 1−N  apart. The number of 
“children” of particle )(i

kx  is the number of points that lie be-
tween ∑ −

=
1
1

)(~i
j

j
kω  and ∑ =

i
j

j
k1

)(~ω . 

V. STATE ESTIMATION EXAMPLES 

In our preliminary experiments we have considered the 
problem of nonlinear state estimation. Our aim was to com-
pare algorithms that use different importance functions, 
namely transition prior and suboptimal importance function. 
The considered nonlinear state space model is given as: 

kkk

kkkk

vxy

dxfx

+=

+= −

20

)(
2

1  (32) 

where )2.1cos(8)1(252)( 2
1111 kxxxxf kkkkk +++= −−−− , 

)5,0(~0 Nx , kd  and kv  are mutually independent white 
Gaussian noises. We have conducted two experiments. In both 
of them the pdf of the process noise was )10,0()( Ndp k = . As 
for the observation noise in first experiment it was 

)1,0()( Nvp k = , while the second experiment was conducted 
for )5e.1,0()( −= Nvp k . The quality of the algorithms per-
formance was measured using Root Mean Squared Error 
(RMSE). For both examples 100 simulations of length n=200 
were considered. Both filters were tested for N=10, 25, 50, 
100, 250, 500, 1000 particles. The resampling step was ap-
plied whenever 3ˆ NNeff < . Fig. 1 illustrates the results ob-
tained in both experiments. We can see that algorithm with 
suboptimal importance function had lower RMSE at the price 
of much higher computational cost. 
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Fig. 1. a) RMSE vs. number of particles b) Computational time vs. 
number of particles 
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a) Transition prior as import. fun. b) Suboptimal import. fun. 

Fig. 2 State estimate in case of low measurement noise (R=1.e-5) 
 
The algorithm with transition prior as importance function 

gave especially poor results in case of low measurement noise 
(R=1.e-5) as it was predicted in theory. 

VI. CONCLUDING REMARKS 

We have considered a theoretical background of sequential 
Monte Carlo methods for nonlinear/non-Gaussian sequential 
estimation applied to neural networks. Experiment in nonlin-
ear state estimation showed that the choice of the importance 
function is crucial for the performance. Based on theoretical 
and experimental results given in this paper, the second paper 
on this subject [8] will introduce algorithms for nonlin-
ear\non-Gaussian estimation applied to neural networks. 
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