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Nonlinear/non-Gaussian sequential estimation  
applied to neural networks: Algorithms 

Branimir Todorović1, Claudio Moraga2, Miomir Stanković1, Branko Kovačević3 

 
Abstract – Sequential Monte Carlo methods known as Particle 
Filters are applied in estimation of the recurrent radial basis 
function network parameters and hidden variables. The consid-
ered algorithms demonstrate smaller estimation error and im-
prove robustness in convergence (regarding the initial parameter 
values), compared to the well known extended Kalman filter. 
Keywords - Sequential Monte Carlo, neural networks, estimation, 
importance sampling, resampling 

I. INTRODUCTION 

In many real world applications of neural networks (NN) 
data arrive sequentially in time, exhibiting non-linear, non-
Gaussian and non-stationary behavior and the task is to esti-
mate (train) neural network and inference sequentially as well. 
The Bayesian approach to estimation arises as natural solution 
to this problem. This approach is based on the state space for-
mulation of the NN dynamics and sequential propagation of 
the NN parameter probability density function (pdf). Since the 
pdf embodies all available statistical information, it represents 
the complete solution of the estimation problem, from which 
the optimal (with respect to any criterion) estimate of the pa-
rameters, and measure of the estimation accuracy can be 
obtained. However, the approach offers only a conceptual 
solution  since the analytic form of the required pdf in general 
cannot be obtained. Special cases include the well known 
Kalman filter, which assumes a linear model and Gaussian 
nature of the noise. In order to deal with the non-linearity and 
non-Gaussianity of the data, various approximations have 
been considered. The extended Kalman filter linearizes the 
model (neural network in our case) around the last estimate 
and makes a Gaussian approximation of the parameter pdf. 
Using these approximations the EKF have been applied to the 
feed forward [2,7] and recurrent NN training [8,10]. 

Estimators based on Sequential Monte Carlo (SMC) meth-
ods, known as a Particle Filters, attempt to overcome con-
straints of the linear Gaussian approximation. The central idea 
is to represent the required pdf by a set of random samples 
with associated weights, propagate them sequentially accord-
ing to the assumed state space model, and calculate estimates 
based on these samples and weights. Some interesting strate-
gies for training of feed forward NN using SMC methods are 
discussed in [3]. 
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In this paper we consider particle filters as parameter esti-
mators for recurrent radial basis function (RRBF) networks, 
and compare their performance to the performance of the ex-
tended Kalman filter. 

II. STATE SPACE MODEL OF RRBF NETWORK 

Without loss of generality we shall consider the RRBF 
network with one output neuron. The overal response of the 
RRBF network is given by:  
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We have used w to denote the wn  dimensional vector of 
unknown parameters (bias 0a , weights ia , centers ilm , τijm  
and widths ilσ , τσ ij ), and Hn  is the number of hidden neu-
rons. The output of the i-th hidden neuron is given by: 
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inputs.  
The RRBF network dynamics is represented by following 

Markov, non-linear State Space Model (SSM):  
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The process noise kd  and observation noise kv  are as-
sumed to be mutually independent, white, and Gaussian with 
covariances kQ  and kR  respectively. The state vector kx is 
obtained by concatenating hidden variables (in our case they 
are previous outputs of the RRBF network ks ) and adjustable 
parameters kw .  

III. BAYESIAN FILTERING 

Assuming that observations arrive sequentially in time 
,...}1,0,{:0 == kyy kk , the task is to estimate sequentially the 

unknown state process ,...}1,0,{:0 == kxx kk . In case of NN 
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training, of primary concern is estimation of the filtering pdf 
)( :0 kk yxp . If the initial pdf, )()( 000 xpyxp =  is available 

( 0y  being the set of no measurements), the pdf )( :0 kk yxp  
may be obtained recursively in two stages: prediction and up-
date. 

The prediction stage uses the system model (1) to predict 
the state pdf forward from one measurement time to the next. 
Suppose that the required pdf )( 1:01 −− kk yxp at time step 

1−k   is available, than the prior pdf of the state at time k is: 

∫ −−−−− = 11:0111:0 )()()( kkkkkkk dxyxpxxpyxp  (4) 

In (3) use has been made of the fact that (1) describes a 
Markov process: )(),( 11:01 −−− = kkkkk xxpyxxp . The prob-
abilistic model of the state evolution )( 1−kk xxp  is defined by 
the system equation and the known pdf of the process noise. 

In the update stage the latest measurement ky  is used to 
modify the predicted pdf )( 1:0 −kk yxp  via the Bayes’ rule: 
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The likelihood )( kk xyp  is defined by the measurement 
model (2) and the known statistics of measurement noise. The 
resulting density is the posterior pdf )( :0 kk yxp . 

For the state space model (3) of the RRBF network, the 
extended Kalman filter produces an analytic solution of (5) by 
linearizing the dynamic equation (3a): 

kkkkkkk dxxFxkx +−+= −−− )ˆ( ),ˆ(Φ)( 111 u , (6)

where TT
11 ]),ˆ(Φ[ −−∇= kkkxk xF u  and 1ˆ −kx  is the estimate of 

1−kx  given observations 1−kY . The relevant pdfs are ap-
proximated by Gaussians. Based on these approximations the 
extended Kalman filter equations are obtained: 

State prediction: ),ˆ(ˆ 11 −−
− Φ= kkkk xx u  (7a)

Prediction error cov.: kkkkk QFPFP +=− T  (7b)
State estimation: kkkk eKxx += −ˆˆ  (7c)

Estimation error cov.: −⋅−= kkk PHKIP )(  (7d)

where −⋅−= kkk xHye ˆ  denotes innovation, 
k

T
kk RHHPS += −  is the innovation covariance, and 

1−−= k
T

kk SHPK  is the Kalman gain. 

IV. SEQUENTIAL IMPORTANCE SAMPLING 

The density )( :0:0 kk yxp  constitutes the complete solution 
to the sequential estimation problem, from which we can ob-
tain the marginal filtering pdf )( :0 kk yxp  and the expectation:  

kkkkkkkyxp xdyxpxfxf
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for any )( :0:0 kk yxp - integrable RRf xnk
k →⋅+ )1(: . 

Assuming that we are able to simulate N i.i.d. random 
samples },...2,1 ;{ )(

:0 Nix i
k =  according to )( :0:0 kk yxp , the 

following estimate of the expectation (8) can be obtained: 
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However, the pdf )( :0:0 kk yxp  is unknown and one can 
not sample from it. Instead we can sample from the known, 
easy to sample importance function )( :0:0 kk yxπ , and use the 
following substitutions in equation (8): 
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where )()()()( :0:0:0:0:0:0 kkkkkkk yxxpxypx πω =  are un-
normalized importance weights. The normalizing constant 

)( :0 kyp  can be rewritten in the following form: 

kkkkkk xdxyxyp :0:0:0:0:0 )()()( ∫= πω  (11) 

By substituting (11) in (10), we obtain: 
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and the estimate of )]([E :0)( :1 kkyp xf
k⋅  is given by: 
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where )(~ i
kω  are the normalized importance weights: 
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Sequential Monte Carlo estimation of the posterior pdf 
)( :0:0 kk yxp , without modifying subsequently the past simu-

lated trajectories },...,1;{ )(
:0 Nix i
k =  is possible if the impor-

tance function has the following form: 

),()()( :01:01:01:0:0:0 kkkkkkk yxxyxyx −−−= πππ  (15) 

By using (15), and taking into account that the state corre-
sponds to a Markov process: ∏ = −= k

j jjk xxpxpxp 1 10:0 )()()( , 
and the observations are conditionally independent given the 
states ∏ == k

j jjkk xypxyp 0:0:0 )()( , we obtain the recursive 
formula for computing the unnormalized importance weights: 
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If ),(),( 1:11:0 kkkkkk yxxyxx −− = ππ  and if only a filter-
ing pdf )( :1 kk yxp  is required, the path )(
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i
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carded, as well as the history of observations 1:0 −ky . Thus, the 
unnormalized importance weights are given by: 
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Ni ,...1= , the posterior filtering density is approximated by: 
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Finally, the Sequential Importance Sampling (SIS) step 
can be summarized in the following algorithm. 
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V. SAMPLING IMPORTANCE RESAMPLING  

Degeneracy of the SIS algorithm. A very important 
drawback of sequential update (17) is that the variance of the 
importance weights increases over time [3]. In practice this 
means that one of the importance weights will tend to one 
while others will tend to zero. Thus, the effective particle size 
reduces from N to almost 1. In order to deal with this prob-
lem, strategies like proper selection of importance function 
and resampling have to be considered. 

Selection of the importance function. Conventional par-
ticle filters use the transition prior as the importance density 
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plement but inefficient because the state space is explored 
without knowledge of the observations. However, Doucet [4] 
proved that the importance function ),( )(

1 k
i
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duced in [11] minimizes the variance of the importance 
weights. For this distribution, unnormalized importance 
weights (17) are given by )( )(
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of the RRBF network dynamics, defined by (3) belongs to an 
important class for which the optimal importance function and 
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The density )( 1−kk xyp  is obtained as: 
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Resampling. The basic idea of resampling methods is to 
eliminate particles with small importance weights and multi-
ply particles with large importance weights in order to limit 
the degeneracy of the sequential importance sampling algo-
rithm. A new set of equally weighted samples N

i
i

k Nx 1
1)( },{ =
−  is 

obtained by resampling (with replacement) N times from an 
approximate discrete representation of )( :0 kk yxp  given by 
(20), so that )()()( ~)Pr( j

k
j

k
i

k xx ω==∗ .  
Some authors advocate the idea that resampling should be 

used only if the effective particle size effN  is below a fixed 
threshold [5]. Effective particle size effN  can be estimated as 
follows [6]: 
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We have implemented and used in our experiments the 
stratified/systematic resampling described in [1], summarized 
in the following algorithm.  
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VI. EXAMPLES 

We consider the identification of the dynamic system, de-
scribed by following SSM: 
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Example 1. The observations ky  are obtained for input:  
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Process noise kd  was drawn from )4-1.e ,0(N  and observa-
tion noise kv  was drawn from )1.0,0(N . Parameters of the 
RRBF network with 4 hidden neurons were estimated using 
the following filters. 
EKF – Extended Kalman filter with noise covariance matri-
ces: 4.1)1,1(, −= eQ sk , 0),(, =jiQ sk , 1, ≠∀ ji . wkQ ,  is a di-
agonal matrix with entries equal to 1.e-4; 1.0=R . 
PF(prior) – Particle filter with transition prior as the impor-
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tance function. skQ ,  is the same as for the EKF. wkQ ,  is a 
diagonal matrix with entries equal to 5.e-3; 1.0=R . 
PF(optimal) – Particle filter with optimal importance function 
(19). Noise covariances are the same as for the PF(prior). 

We have conducted 100 simulations for different initial 
parameter values and noise sequences. In order to observe the 
RRBF network training, for each simulation the root mean 
squared error using the difference between the true state )(kx  
and output of the RRBF network (predicted state) was calcu-
lated. The resampling was performed in every time step.  

For this example particle filters converged in every simu-
lation with mean RMSE presented in Table I, while EKF con-
verged only in 19 simulations out of 100. The mean of RMSE 
calculated for these simulations was 2.31e-1.  

TABLE I 
MEAN AND VARIANCE OF RMSE ( )4-1.e ,0(~ Ndk , )1.0,0(~ Nvk  

 EKF PF (prior) PF (optim.) 
mean(RMSE) − 1.89e-1 1.86e-1 
var(RMSE) − 3.34e-4 2.86e-4 
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Fig. 1. State prediction (RRBF network output) and estimation using 

PF (optimal)  ( )4.1 ,0(~ −eNdk , )0.1 ,0(~ Nvk  

Example 2. As in the first example the observations ky  
are obtained for the  input defined by (23). Process noise kd  
was drawn from )01.0 ,0(N  and observation noise kv  was 
drawn from )4-1.e ,0(N . Parameters of the RRBF network 
with 4 hidden neurons were estimated using following filters: 
EKF – Noise covariance matrices: 01.0)1,1(, =skQ , 

0),(, =jiQ sk , 1, ≠∀ ji . wkQ ,  is a diagonal matrix with en-
tries equal to 0.01; 4.1 −= eR . 
PF(prior) – skQ , , wkQ ,  are the same as for the EKF; 1.0=R . 
PF(optimal) – skQ , , wkQ ,  and R are the same as for the EKF. 

For this example, the EKF converged in 66 simulations out 
of 100. Mean and variance of the RMSE for these simulations 
are given in Table II. 

TABLE II 
MEAN AND VARIANCE OF RMSE ( )01.0,0(~ Ndk , )4-1.e ,0(~ Nvk  

 EKF PF (prior) PF (optimal) 
mean(RMSE) 2.56e-1 1.94e-1 1.68e-1 
var(RMSE) 5.24e-3 1.29e-3 1.37e-4 
Time(sec) 5.68 44.44 116.82 
 
As for the PF(prior), it could not converge when R was set 

to the variance of the observation noise 1.e-4. However, when 
R was empirically increased to 01.0=R , the PF(prior) con-

verged in every one of 100 simulations and the mean of the 
RMSE was slightly worse than for the PF(optimal) (Table II). 
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Fig. 2. State prediction (RRBF network output) and estimation using 

PF (optimal) ( )01.0 ,0(~ Ndk , )4-1.e  ,0(~ Nvk  

VII. CONCLUDING REMARKS 
We have applied the sequential Monte Carlo methods in 

the form of particle filters in RRBF network parameter and 
state estimation The considered algorithms demonstrate 
smaller estimation error and improve robustness in conver-
gence (regarding the initial parameter values), compared to 
the well known extended Kalman filter.  
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