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Abstract - We introduce a probabilistic extension of propositional 
intuitionistic logic. The logic allows making statements such as 
P≥sA, with the intended meaning "the probability of truthfulness 
of A is greater than or equal to s. We describe the corresponding 
class of models, which are Kripke models with a naturally 
arrising notion of probability, and give a sound and complete 
infinitary axiomatic system. We prove that the logic is decidable. 
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I. INTRODUCTION 
 

The aim of probabilistic logic is clearly to capture the rules 
of reasoning about uncertain knowledge. The classical 
(boolean) logic, on the other hand, may be regarded as starting 
from a position of omniscience, in so far as it considers that 
each proposition must be either true or false. Therefore, it is 
not surprising that combining these two approaches, e.g. by 
adding probability operators to classical propositional logic as 
it was done in [4,5,9,10,11], would be sometimes difficult. 

There is a popular view of intuitionistic logic as pertaining 
to growth of knowledge, which is especially convincing when 
talking about Kripke models. Namely, in addition to 
propositions which are proved to be true and those which are 
proved to be false (contradictory), there is a third class of 
propositions which may turn out either way and intuitionism 
allows us to reason also about them. 

In this paper we combine probabilistic operators with 
intuitionistic logic. There are two possible approaches to do 
that. We may treat probabilistic operators classically or we 
may assume that they behave intuitionistically. The latter 
approach was analyzed in [2], while we consider here the 
former one. At the syntax level we add probabilistic operators 
to the propositional intuitionistic language which enables 
making formulas such as P≥sA. The intended meaning of the 
formula is "the probability of truthfulness of A is greater than 
or equal to s". In our logic nesting of probabilistic operators, 
i.e., higher order probabilities, will not be allowed. 

As a semantics we introduce a class of models that combine 
properties of intuitionistic Kripke models and  
probabilities.Since nesting of probabilistic operators is not 
allowed, it is possible to give a simple and natural 
interpretation of probabilistic formulas, quite in line with 
Boole's original ideas, based on the 'size' of the set of possible 

worlds in which a proposition is true. We propose an infinitary 
axiomatic system which we prove is sound and complete with 
respect to the mentioned class of probabilistic intuitionistic 
models. 

In this paper the terms finitary and infinitary concern meta 
language only. Object languages are countable, formulas are 
finite, while only proofs are allowed to be infinite. The need 
for this infiniteness comes from the failure of compactness 
theorem for this type of logics, as will be explained in the 
conclusion. 

We may try to motivate this combination of intuitionistic 
and probabilistic logics through the following example. It is 
well known that (p → q) V (q → p) is a classical, but not 
intuitionistic, tautology. Since tautologies should have 
probability one, starting with classical logic makes P≥1((p → 
q) V (q → p)) valid in probabilistic logic. If we take now p to 
be "it rains" and q to be "the sprinkler is on", it is clear that the 
sprinkler should not be on when it rains, i.e., p → q should 
low probability, say less than E. But, this yields, with classical 
logic, P≥1-E(q → p) (since the measure of the union of two sets 
is less or equal than the sum of the measures of those sets) 
although it does not seem highly probable that it should rain 
when the sprinkler is on.  

For those without experience with intuitionistic logic, one 
should stress that p → q being false in a Kripke model does 
not mean that it is always rainig but only that in every world 
there is some later world (world with more information) in 
wich it does rain but the sprinkler is off. Therefore, we may 
also have quite a few worlds in which the sprinkler is on but it 
does not rain.  

Comming back to the argument we made at the begining, 
from the point of view of classical logic it either rains or it 
does not. The intuitionistic logic allows us to be in a world in 
which we simply do not know which is true but from which we 
can envisage some possible worlds in which it does rain (and 
maybe also some in which it does not). Simply counting the 
worlds in which p → q is true (and dividing by the total 
number of worlds) may give us the probability of its 
truthfullness in a given model. In such a way we may construct 
models in which both p → q and q → p have low probability 
which is impossible if we work with classical logic. 

As for the classical treatment of probabilistic operators, we 
may say that once we determine (somehow) the probability of 
an uncertain proposition A, it should be either greater or equal 
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to some s from [0,1] or not, so it is not unreasonable to assume 
P≥sA V ¬P≥s A (even if we reject A V ¬A). 

II. SYNTAX 
 
Let S be the set of all rational numbers from [0, 1]. The 

language of the logic consists of a denumerable set F = {p, q, 
r, ...} of propositional letters, connectives ¬, &, V, → and a 
list of unary probabilistic operators (P≥s)s∈S. The set For(I) of 
intuitionistic propositional formulas is the smallest set X 
containing F and closed under the formation rules: if A and B 
belong to X, then ¬A, A & B, A V B, and A → B are in X. 
The set For(P) of probabilistic propositional formulas is the 
smallest set Y containing all formulas of the form P≥sA for A 
∈ For(I), s ∈ S, and closed under the formation rules: if A and 
B belong to Y, then ¬A, and A & B are in Y. Let For(I) U 
For(P) be denoted by For.  Probabilistic literals are formulas 
of the form P≥sA or ¬P≥sA. We use A V B, A → B and P<s A 
to denote the formulas ¬(¬A & ¬B), ¬A V B and ¬P≥sA, 
respectively. Note a difference between the sets For(I) and 
For(P). Namely, according to the previous definitions, 
propositional connectives are independently introduced in the 
set For(I), while V and → are defined from ¬ and & in the set 
For(P). 

 
III. SEMANTICS 

 
We propose a possible-world approach to give semantics to 

formulas from the set For. According to the structure of For, 
there are two levels in the definition of models. At the first 
level there is the notion of intuitionistic Kripke models [8], 
while probability comes in the picture at the second level.  

 
Definition 1. An intuitionistic (propositional) Kripke model 
for the language For(I) is a structure < W, ⊆, v > where: 
• < W, ⊆ > is a partially ordered set of possible words 

which is a tree, and 
• v is a valuation function, i.e., v maps the set W into the 

powerset P(F)), which satisfies the condition: for all w, w' 
from W, w ⊆ w' implies v(w) ⊆ v(w'). 

 
We find it convinient to work with Kripke models in which 

the ordering of worlds is a tree. It is well known that 
intuitionistic propositional logic is sound and complete also 
with respect to this restricted class of Kripke models.  

In each Kripke model we define the forcing relation ||- by 
the following definition: 

 
Definition 2. Let < W, ≤, v > be an intuitionistic Kripke 
model. The forcing relation ||- is defined by the following 
conditions for every w from W, A, B from For(I): 
• for A from F, w ||- A iff A ∈ v(w), 
• w ||- A & B iff w ||- A and w ||- B,  
• w ||- A V B iff w ||- A or w ||- B, 
• w ||- A → B iff for every w' from W if w ⊆ w' then it is 

not w' ||- A or w' ||- B, and  
• w ||- ¬ A iff for every w' from W if w ⊆ w' then it is not 

w'||- A. 

 
We read w ||- A as "w forces A" or "A is true in the world 

w". Validity in the intuitionistic Kripke model < W, ⊆, v> is 
defined by < W, ≤, v> |= A iff for all w from W, w ||- A. A 
formula A is valid (|= A) if it is valid in every 

intuitionistic Kripke model. 
Let M = < W, (, v> be an intuitionistic Kripke model. We 

use [A]M to denote the set of all w from W such that w ||- A, 
for every A from For(I). Clearly, the family HI= {[A]M: A ( 
For(I)} is a Heyting algebra. Thus, H_I is a lattice on W, but it 
may not be closed under complementation. 

 
Definition 3. A probabilistic model is a structure < W, (, v, H, 
m > where: 
• < W, ≤, v > is an intuitionistic Kripke model, 
• H is the smalest algebra on W containing HI 
• m : H →  [0, 1] is a finitely additive probability. 

 
Note that H contains all sets of the form W \ [A]M, even if 

for some A from For(I) it may not be W \ [A]M = [¬A]M. 
 

Definition 4. The satisfiability relation |= is defined by the 
following conditions for every probabilistic model M = 
<W,(,,v,H,m >: 
• for A from For(I), M |=A if for all w from W, w ||- A, 
• M |= P≥sA if m([A]M) ≥ s, 
• for A from For(P), M|=¬A if M|=A does not hold,  
• for all A, B from For(P), M |= A & B if M |= A, and M |= 

B. 
 
A formula A from For is satisfiable if there is a probabilistic 

model M such that M |= A; A is valid if for every probabilistic 
model M, M |= A; a set of formulas is satisfiable if there is a 
probabilistic model M such that for every formula A from the 
set, M |= A. 

 
IV. A sound and complete axiomatization 

 
The set of all valid formulas can be characterized by the 

following sound and complete set of axiom schemata: 
 

1. all For(I)-instances of intuitionistic propositional 
tautologies 

2. all For(P)-instances of classical tautologies 
3. P≥0 A 
4. P≥1-r ¬A → ¬P≥s A, for s > r 
5. P≥r A → P≥s A, for r ≥ s 
6. P≥1(A → B) →(P≥sA → P≥sB) 
7. (P≥s A & P≥r B & P≥1¬(A&B) ) → P≥ min(1,s+r)( A V 

B) 
8. (P< s A & P<r B → P<s+r(A V B ), s+r ≤ 1 
9. and inference rules: 
10. Modus ponens 
11. If A ( For(I), from A infer P≥1 A. 
12. From B→P≥s-1/k A, for every k≥ 1/s, infer B → P≥s A. 

 
A formula A is deducible from a set T of formulas (T |- A) 

if there is an at most countable sequence of formulas A0, A1, 
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..., A, such that every formula in the sequence is an axiom or a 
formula from the set T, or it is derived from the preceding 
formulas by an application of an inference rule. If T |- A and T 
is an emptyset, we say that A is a theorem of the deductive 
system (denoted by |- A).A set T of formulas is consistent if it 
is not T |- ¬ (A → A). Otherwise, T is inconsistent. 

A set T of formulas is deductively closed if for every A 
from For, if T |- A, then A belongs to T. A set T of formulas 
has the disjunction property if for every A, B from For(I), T |- 
A V B implies T |- A or T |- B. A disjunctive closure of a set T 
of formulas is a set T' which contains T and for every A, B 
from For(I), if A V B belongs to T then A belongs to T' or B 
belongs to T'. 

 
Soundness theorem 1. The above axiomatic system is sound 
with respect to the class of probabilistic models. 
Proof. Soundness of our system follows from the soundness of 
propositional intuitionistic and classical logics, as well as from 
the properties of probabilistic measures. 

 
 In the proof of the completeness theorem the following 

strategy is applied. We start with a form of Deduction 
theorem. Then, we show how to extend a consistent set T of 
formulas to a consistent set T* which is in some sense 
maximal. Then, a canonical model M is constructed out of the 
formulas from the set T* such that M |= A iff A belongs to T*. 

 
Deduction theorem 2. If T is a set of formulas and T U {A} |- 
B, then T |- A → B, where either A, B belong to For(I) or A, 
B belong to For(P). 

 
We now describe how to extend a consistent set T of 

formulas in a proper way. Let ipconseq(T) = { A ∈ For(I): T |- 
A } be the set of all intuitionistic propositional consequences 
of T, and T'be a consistent disjunctive closure of ipconseq(T). 
Let A0, A1, … be an enumeration of all formulas from 
For(P).We define a sequence of sets Ti, i = 0, 1, 2, ..., and a 
set T* such that: 
• T0= T U T' U {P≥1A: A ∈ T'} 
• for every i = 0, 1, …, if Ti U {Ai} is consistent, then Ti+1 

= Ti U {Ai}, otherwise, Ti+1 = Ti U 
• if Ti+1 is obtained by adding a formula of the form ¬(B → 

P≥sC), then for some positive integer n, B → ¬P≥s-1/nC, is 
also added to Ti+1, so that Ti+1 is consistent, 

• T  = Ui Ti. 
 
The set T* is used to construct a canonical probabilistic 

model M. First, we construct an intuitionistic Kripke model. 
Let w0 denote the set T' and W be the set of all consistent, 
deductively closed extensions of w0 having the disjunction 
property. Let v(w) = {A ∈ F: A ∈ w}. Then < W, ⊆, v > is an 
intuitionistic Kripke model, and for every w ∈ W, and every A 
∈ For(I), w ||- A iff A ∈ w. 

In the next step we define a canonical probabilistic model 
M.Let < W, ⊆, v > be as above, HI = {[A]M}A ∈ For(I), and for 
every A ∈ For(I), mI([A]M) = sup{s: P≥s A ∈ T*}. Let H be the 
smalest algebra on W containing HI, and m a finitely additive 
probability on H which is an extension of mI.  

Theorem 3. M = < W, ⊆, v, H, m > is a probabilistic model. 
 
Completeness theorem 4. Every consistent set of formulas is 
satisfiable. 

 
V. DECIDABILITY 

 
It is well known that a formula A ∈ For(I) is 

intuitionistically satisfiable iff it is forced in the root of a tree-
like model which is decidable [6,8,12]. It follows that 
satisfiability problem of For(I)-formulas in our probabilistic 
logic is decidable. Thus, to prove decidability of our logic it is 
enough to show that satisfiability problem for probabilistic 
formulas is decidable.  

Let A ∈ For(P) and Sub(I)(A) = { A ∈ For(I): A is a 
subformula of A}. Let |A| and |Sub(I)(A)| denote the length of 
A, and the number of formulas in |Sub(I)(A)|, respectively. 
Obviously, |Sub(I)(A)| ≤ |A|. 

 
Theorem 5. A probabilistic formula A ( 
For(P) is satisfiable iff it is 
satisfiable in a finite probabilistic 
model containing at most 2(|A|^2) worlds. 
 
Theorem 6. The satisfiability problem for 
probabilistic formulas is decidable. 
Proof. For A ( For(P) let us denote by 
DNF(A) the formula Vi (&j #P(s(i,j) 
Ai,j), where #P(s(i,j) Ai,j's are 
probabilistic literals, which is 
equivalent to A. For every A ( For(P) 
there is at least one DNF(A), because 
propositional connectives behave 
classically at the probabilistic level. A 
is satisfiable iff at least one disjunct 
D from DNF(A) is satisfiable. Since D is 
a conjunction of probabilistic literals, 
without loss of generality we can assume 
that A is of the same form. We know that 
A is satisfiable iff it is satisfiable in 
a probabilistic model with at most k(A) = 
2(|A|^2) worlds. Thus, we can check 
satisfiability of A in the following 
way.For every integer l from [1, k(A)], 
there is only finitely many 
intuitionistic models with different 
valuations with respect to the set of 
propositional letters that occur in A. 
For every such intuitionistic model M(I) 
= < W, (, v > we can find the algebra H 
generated by the set {[A]M(I): A ( 
Sub(I)(A)} and suppose that every {w} (w 
( W) belongs to H as well, and consider 
the following linear system: 
∑w ( W m(w) = 1 
m(w) ( 0, for w ( W 
∑w ( [A]_M(I) m(w) ( r, for every P(rA 
which appears in A 
∑w ∈ [A]_M(I) m(w) < r, for every ¬P≥r A which appears in A. 

Obviously, if the above system is solvable, M = < W, ⊆, v, 
H, m > |= A. There is a finite number of models and linear 
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systems we have to check. Since linear programming problem 
is decidable, the same holds for the considered satisfiability 
problem. Finally, since A is valid iff ¬A is not satisfiable, the 
validity problem is also decidable. 

 
VI. CONCLUSION 

 
In this paper we have investigated a logic which combines 

probabilistic and intuitionistic reasoning. We have given an 
axiomatic system which is sound and complete with respect to 
a class of Kripke-style models. We have also proved that our 
logic is decidable. The compactness theorem does not hold for 
our logic. To see that consider the set T = { ¬P≥1A } U { P≥ 1 - 

1/n A: n is a positive integer }. Although every finite subset of 
T is satisfiable, the set T itself is not. Since the compactness 
theorem follows easily from the extended completeness 
theorem ('every consistent set of formulas is satisfiable'), we 
cannot hope for the extended completeness when we have a 
finitary axiomatic system. However, including an infinitary 
rule in our axiomatization  we obtain the extended 
completeness theorem. As we have already noted this is not 
the first paper which considers combinations of intuitionistic 
and probabilistic logics. In [2,3] two kinds of probabilistic 
operators for upper and lower probabilities were added to 
Heyting propositional logic. The corresponding models were 
Kripke models with two families of measures that were 
subadditive and superadditive, respectively, and monotone 
with respect to the order of the worlds. An axiomatic system 
was presented and showed to be sound and complete for the 
models described. In that logic iteration of probabilistic 
operators was allowed. On the other hand, our probabilistic 
operators behave classically which enables that in every model 
there is only one probability distribution. Since we allow 
probabilistic operators to be applied to propositional formulas 
from For(I) only, it would be interesting to see whether our 
approach can be used when higher order probabilities are 
considered in intuitionistic framework. Our approach is more 
similar to papers [4,5,9,10,11]. However, since the basic logic 
in those papers is classical propositional logic, and we start 
from intuitionistic logic, there are formulas that are valid in 
the mentioned logics, but not in ours. In [9,10,11] 
probabilistic operators of the forms P≤s and P> s (meaning 
"probability is at most s", and "probability is greater than s") 
were defined as P≤s A = P≥1-s ¬A and P>sA = ¬P≥1-s ¬A, 
respectively. It can not be done in the approach presented 
here. Namely, P≤s ¬A follows from P(1-s A, but it is easy to 
see that the other direction does not hold. Instead, we may 
extend our logic, in the spirit of intuitionistic systems, by 
having two kinds of probabilistic operators of the forms P≥s, 
and P≤s, that are not inter-definable, and by adding 
corresponding duals of the axioms and inference rules. 

Finally, we note that working with real numbers, supremum 
etc., as we have done above, may be seen as suspect from the 
intuitionistic point of view. To avoid such a problem, we can 

apply the following idea and sintactically control ranges of 
probabilities. Let S be a recursive subset of [0, 1] which 
contais all rational numbers from that interval. We extend the 
propositional language with a list of probabilistic operators 
(P≥s)s(S. Next, we demand that ranges of probabilities in 
probabilistic models must be subsets of S. Otherwise, all the 
definitions about models and satisfiability remain the same as 
above. To obtain a complete axiomatization with respect to 
the new class of models a new inference rule: 

• From A → P≠s A, for every s ( S, infer A → false. 
should be substituted for the only infinitary rule in the 
axiomatic system. 
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