# Some Remarks on Complete Theory of One Probability Logic 

Milanka Bradic ${ }^{1}$

Abstract - We give the representation for one class of probability algebras whose set algebras are constructed with respect to the probability measure spaces. On the other hand a formula algebra of one probability logic belongs to the same class such that it is possible to define the probabilities of formulas as measures of corresponding sets.
Key words: weak probability cylindric algebra, probability logic, probability of formulas.

## I. INTRODUCTION

Since there is no possibility of confusion, the concatenation of two sequences $\bar{x}$ and $\bar{y}$ where $\bar{y}=\langle a\rangle$ is 1-termed and $a \notin R g \bar{x}$ will be denoted with $\bar{x} a$. The set of one-one function from $n \in \omega$ into an ordinal $\alpha$ is denoted with $\alpha_{\mapsto}^{n}$, and $\alpha_{\mapsto}^{<\omega}$ denotes $\underset{n \in \omega}{\bigcup} \alpha_{\mapsto}^{<\omega}$.
Weak probability cylindric algebra of dimension $\alpha$, where $\alpha$ is any ordinal, is cylindric algebra of dimension $\alpha$ enriched by unary operations $C_{\rho}^{r}$ for $r \in[0,1]$ and $\rho \in \alpha_{\mapsto}^{<\omega}$ which are called probability cylindrifications. The class of all loccally finite weak probability cylindric algebras of dimension $\alpha$ is denoted with $\mathbf{w p L f}_{\alpha}$ and defined in exactly the same way as in the theory of cylindric algebras.
DEFINITION: Let $U$ be a set and $\alpha$ any ordinal. Suppose $X \subseteq U^{\alpha}, u \in U^{\alpha}$ and $\rho \in \alpha_{\mapsto}^{<\omega}$. The set

$$
X^{[u]} \rho=\{x \circ \rho: x \in X, x \backslash \backslash \sim R g \rho=u \backslash \backslash \alpha \sim R g \rho\}
$$

is said to be $u-\rho$ cross section of $X$.
A weak probability cylindric set algebra of dimension $\alpha$ (with respect to the finitely additive $n$-fold product probability measure spaces for $n \in \omega \sim 1$ ) is a structure

$$
\mathrm{A}=\left\langle\boldsymbol{A}, \cup, \cap, \sim, 0, U^{\alpha}, \boldsymbol{C}_{\boldsymbol{\kappa}}, \boldsymbol{C}_{\rho}^{r}, \boldsymbol{D}_{\kappa \lambda}\right\rangle
$$

such that $\kappa, \lambda<\alpha, \quad \rho \in \alpha_{\mapsto}^{<\omega}, r \in[0,1]$ and $\boldsymbol{A}$ is a nonempty subset of $S b U^{\alpha}$, and such that the following holds: (1) There is a finitely additive probability measure space $\mathrm{U}=\langle U, S, \mu\rangle$ such that $\left\langle U^{n}, S^{(n)}, \mu_{n}\right\rangle$ is a finitely

[^0]additive $n$-fold product probability measure space of $U$ and for each $n \in \omega \sim 1$,
\[

$$
\begin{gathered}
\left\{X^{[u]_{\rho}}: X \in A, \rho \in \alpha_{\mapsto}^{n}, u \in U^{\alpha}\right\} \subseteq S^{(n)} \\
C_{\rho}^{r}: S b U^{\alpha} \rightarrow S b U^{\alpha} \text { for any } \rho \in \alpha_{\mapsto}^{<\omega} \text { and any } r \in[0,1]
\end{gathered}
$$
\] such that for every $X \subseteq U^{\alpha}$ we have $C_{0}^{r} X=X$, and if Do $\rho=n$, then

$$
\begin{equation*}
\boldsymbol{C}_{\rho}^{r} X=\left\{u \in U^{\alpha}: \mu_{n}\left(X^{[u]_{\rho}}\right) \geq r\right\} \tag{3}
\end{equation*}
$$

The collection $\boldsymbol{A}$ is an $\alpha$-dimensional cylindric field of sets and $\boldsymbol{A}$ is closed under probability operations $\boldsymbol{C}_{\rho}^{r}$ (for all

$$
\left.r \in[0,1] \text { and all } \rho \in \alpha_{\mapsto}^{<\omega}\right) .
$$

## II REPRESENTATION THEOREM

Some result will be mentioned which have the role in establishing sufficient conditions for representability of simple rich algebras from the class $\mathbf{w p L f} \mathbf{f}_{\alpha}$.

Suppose $\mathrm{A} \in \mathbf{w p L f}_{\alpha}, \quad x \in A$ and $\rho \in \alpha_{\mapsto}^{<\omega}$. By the characteristic point of $x$ with respect to $\rho$, in symbol $\operatorname{ch}_{\rho}(x)$, is meant max $\left\{r: r \in[0,1], C_{\rho}^{r} x=1\right\}$. This max always exists. It is not hard to show that A is simple iff contains just two zero-dimensional elements. This enables us to prove that if A is simple and $\Delta x \subseteq \operatorname{Rg} \rho$ ( $\Delta x$ is the set of all ordinals $\mu<\alpha$ for which $c_{\mu}^{x \neq x}$ ), then for each $r \in[0,1]$ either $C_{\rho}^{r} x=0$ or $C_{\rho}^{r} x=1$.
If $A$ is assumed to be simple, we then have:
1.

$$
\operatorname{ch}_{\rho}(x)=\inf \left\{r: r \in[0,1], C_{\rho}^{r} x=0\right\}, \text { if } x \neq 1
$$

2. If $\rho \neq 0$ and $c h \rho$ is understood as a function from the set of all elements of $A$ for which $\Delta x \subseteq \operatorname{Rg} \rho$ into $[0,1]$, then $c h \rho$ is a finitely additive function.
3. If $P=\left\langle x_{j}: j \in J\right\rangle$ is an arbitrary system of pairwise disjoint elements of $A$ such that $\Delta x_{j} \subseteq R g \rho$ for
each $j \in J$ and $Q$ is the set of all members $x$ of $P$ for which $\operatorname{ch} \rho(x)>0$, then $Q$ is at most countable and

$$
\sum_{x \in Q} \operatorname{ch} \rho(x) \leq 1
$$

4. If $\alpha \geq \omega$ and A is a set algebra, then elements of $\boldsymbol{A}$ are similar to the tail sets and for any $\rho \in \alpha_{\mapsto}^{n}$ and any $X \in A$ such that $\Delta X \subseteq R g \rho$ we have that

$$
\mu_{n}(\{x \backslash R g \rho: x \in X\})=\operatorname{ch}_{\rho}(X) .
$$

It should be mentioned that the third statement is extended to arbitrary probability algebras.
The notions of the rich algebra and the 0-thin element are taken over the theory of cylindric algebras.
THEOREM: Suppose $\mathrm{A} \in \mathbf{w p L f}_{\alpha}$ with $\alpha \geq \omega$ and A is simple rich having the rectangle property. Let $U$ be the set of all 0-thin elements in A and

$$
\begin{gathered}
\sum_{x \in Q} \operatorname{ch}\langle 0\rangle(x)=1, \text { where } \\
Q=\{u: u \in U, \operatorname{ch}\langle 0\rangle(u)>0\} .
\end{gathered}
$$

Then A is isomorphic to a weak probability cylindric set algebra such that $\mu_{n}$ 's are countably additive.
It should be pointed out that the proof which we given is continued the proof of analogous theorem for cylindric algebras (see [1]). Our proof extends an algebraic version of Henkin's proof of Completeness Theorem for first-order predicate calculus to the probability case.

## III. PROBABILITY LOGIC $L_{W O P}$

The logic we want to define will be called the weak ordinary probability logic and denoted with $L_{W O P}$.
A language $L$ of this logic contains only finitary relations and constant symbols. The sequence of variables $\langle x \xi: \xi<\alpha\rangle$ has infinite length.
The connectives $\neg$ and $\wedge$, the ordinary quantifiers for all variables, the probability quantifiers $(P \bar{x} \rho \geq r)$ for all $r \in[0,1]$ and all $\rho \in \alpha_{\mapsto}^{<\omega}$ such that

$$
\bar{x}_{\rho}=\left\langle x_{\rho(0)}, \cdots, x_{\rho(n-1)}\right\rangle
$$

where $D o \rho=n$, and the equality symbol $=$ are logical symbols of $L_{W O P}$. Also, the truth symbol $T$ and the falsehood symbol $F$ are logical symbols treated as sentential constants. The finitary connectives $\vee, \wedge, \rightarrow$ and $\leftrightarrow$ are defined as usual.
$\underset{\varphi \in \Phi}{\bigvee} \varphi$ is an abbreviation for $\neg \bigwedge_{\varphi \in \Phi}^{\wedge} \neg \varphi$.
The set Form ${ }^{L}$ of formulas of $L_{W O P}$ in language $L$ is the least set such that: each atomic formula of ordinary first-order logic in $L$ is a formula of $L_{W O P}$, if $\varphi$ is a formula of $L_{W O P}$, then $\neg \varphi, \forall x \varphi, \exists x \varphi$ (for all variables $x$ ) and $(P \bar{x} \geq r) \varphi$
for all probability quantifiers are formulas of $L_{W O P}$, and if $\Phi$ is a countable set of formulas of $L_{W O P}$ with only finitely many variables, then $\wedge \Phi$ is a formula of $L_{W O P}$.
The set of axioms for $L_{W O P}$ contains all formulas of the following forms:
(A1) All axioms of ordinary first-order logic (in $L$ );
(A2) $\wedge \Phi \rightarrow \varphi$, if $\varphi \in \Phi$;
(A3) $(P \bar{x} \geq r) \varphi \rightarrow(P \bar{x} \geq s) \varphi$, if $r \geq s$;
(A4) $(P \bar{x} \geq r) \varphi(\bar{x}) \rightarrow(P \bar{y} \geq r) \varphi(\bar{y})$.
(A5) $(P \bar{x} \geq 0) \varphi$.
(A6) $(P \bar{x} \geq r) \varphi \wedge(P \bar{x} \geq s) \psi \rightarrow$
$\rightarrow(P \bar{x} \geq \max (0, r+s-1)(\varphi \wedge \psi)$.
(A7) $(P \bar{x} \geq r) \varphi \wedge(P \bar{x} \geq s) \psi \wedge(P \bar{x} \geq 1)$
$(\neg(\varphi \wedge \psi)) \rightarrow(P \bar{x} \geq \min (1, r+s))(\varphi \vee \psi)$.
(A8) $\neg(P \bar{x} \geq r) \neg \varphi \leftrightarrow \underset{n \in \omega \sim 1}{\bigvee}\left(P \bar{x} \geq 1-r+\frac{1}{n}\right) \varphi$, if $r \neq 0$.
(A9) $(P \bar{x} \geq r) \varphi \leftrightarrow(P \bar{y} \geq r) \varphi$, if $R g \bar{x}=R g \bar{y}$.
(A10) $\neg\left(P\left\langle x_{\kappa}\right\rangle \geq r\right) \neg \varphi \rightarrow \exists x_{\kappa} \varphi$.
(A11) Provided $R g \bar{x} \cap R g \bar{y}=0$ and the set of all free variables of $\varphi$, respectively $\psi$ is a subset of $\operatorname{Rg} \bar{x}$, respectively $R g \bar{y}$,
$(P \bar{x} \geq r)(P \bar{y} \geq s)(\varphi \wedge \psi) \rightarrow(P \overline{x y} \geq r \cdot s)(\varphi \wedge \psi)$.
The Rules of Inference are as follows: Modus Ponens, Universal Generalization, Conjuction and Probability Generalization.
The Deduction Theorem holds. Concerning the Completeness Theorem the answer is positive for a similar logic $L_{\mathbf{A} P \forall}$, where $\mathbf{A}$ is a countable admissible set, $\omega \in \mathbf{A}$, the length of the sequence of variables is $\omega$ and the formulas are constructed set theoretically each of which belongs to $\mathbf{A}$.
The theorems of $L_{W O P}$ concerning only probability part are analogous to the theorems of $L_{\mathbf{A} P}$ (see [2]). The list below does not contain them except of first three which will be involved in an example of provability for one formula.
Thus the following are theorems of $L_{W O P}$.

$$
\begin{equation*}
\text { If } \mid-\varphi \rightarrow \psi, \text { then }(P \bar{x} \geq r) \varphi \rightarrow(P \bar{x} \geq r) \psi \tag{1}
\end{equation*}
$$

(2) If variables from $\bar{x}$ does not free occur in $\varphi$, then

$$
\mid-(P \bar{x} \geq r)(\varphi \wedge \psi) \leftrightarrow \varphi \wedge(P \bar{x} \geq r) \psi \text { and }
$$

$\mid-(P \bar{x} \geq r)(\varphi \vee \psi) \leftrightarrow \varphi \vee(P \bar{x} \geq r) \psi$.
(3) If $x_{\mathcal{K}} \notin R g \bar{x}$, then

$$
\mid-\left(P \bar{x} x_{\kappa} \geq r\right) \varphi \rightarrow(P \bar{x} \geq r) \exists x_{\kappa} \varphi
$$

(4) If $x_{\kappa} \notin R g \bar{x}$, then

$$
\mid-(P \bar{x} \geq r) \exists x_{\kappa} \varphi \leftrightarrow\left(P \bar{x} x_{\kappa} \geq r\right) \exists x_{\kappa} \varphi
$$

(5) $\quad \mid-\neg(P \bar{x} \geq 1) \neg \varphi \rightarrow \exists \bar{x} \varphi$.

$$
\begin{align*}
& \mid-(P \bar{x} \geq r) \varphi \rightarrow \exists \bar{x} \varphi .  \tag{6}\\
& \mid-\forall \bar{x} \varphi \rightarrow(P \bar{x} \geq r) \varphi .  \tag{7}\\
& \mid-(P \bar{x} \geq r) \forall x_{\kappa} \varphi \rightarrow \forall x_{\kappa}(P \bar{x} \geq r) \varphi .  \tag{8}\\
& \mid-\exists x_{\kappa}(P \bar{x} \geq r) \varphi \rightarrow(P \bar{x} \geq r) \exists x_{\kappa} \varphi . \tag{9}
\end{align*}
$$

$\mid-\exists x_{\kappa}(P \bar{x} \geq r) \varphi \leftrightarrow(P \bar{x} \geq r) \varphi$.
(11) If $x_{\kappa}, x_{\lambda} \notin R g \bar{x}$, then
$\mid-(P \bar{x} \geq r) \exists x_{\kappa}\left(x_{\kappa}=x_{\lambda} \wedge \varphi\right) \leftrightarrow$
$\leftrightarrow \exists x_{\kappa}(P \bar{x} \geq r)\left(x_{\kappa}=x_{\lambda} \wedge \varphi\right)$.
(12) If $x_{\kappa}, x_{\lambda} \notin R g \bar{x}$, then

$$
\begin{gathered}
\mid-\left(P \bar{x} x_{\kappa} \geq r\right) \exists x_{\lambda}\left(x_{\kappa}=x_{\lambda} \wedge \varphi\right) \leftrightarrow \\
\leftrightarrow\left(P \bar{x} x_{\lambda} \geq r\right) \exists x_{\kappa}\left(x_{\kappa}=x_{\lambda} \wedge \varphi\right)
\end{gathered}
$$

As an example we sketch the proof of (11) using well known result for first-order logic, that is,
(13) $\quad \mid-\exists x_{\kappa}\left(x_{\kappa}=x_{\lambda} \wedge \varphi\right) \leftrightarrow \forall x_{\kappa}\left(x_{\kappa} \neq x_{\lambda} \vee \varphi\right)$.

Denote $(P \bar{x} \geq r) \exists x_{\kappa}\left(x_{\kappa}=x_{\lambda} \wedge \varphi\right)$ with $\theta$.
Making use of (1) and (13) we get
$\mid-\theta \rightarrow(P \bar{x} \geq r) \forall x_{\kappa}\left(x_{\kappa} \neq x_{\lambda} \vee \varphi\right)$.
Using (8) and after this the second part of (2) it follows
$-\theta \rightarrow \forall x_{\kappa}(P \bar{x} \geq r)\left(x_{\kappa} \neq x_{\lambda} \vee \varphi\right)$
$\mid-\theta \rightarrow \forall x_{\kappa}\left(x_{\kappa} \neq x_{\lambda} \vee(P \bar{x} \geq r) \varphi\right)$.
Applying (13) we show
$\mid-\theta \rightarrow \exists x_{\kappa}\left(x_{\kappa}=x_{\lambda} \wedge(P \bar{x} \geq r) \varphi\right)$.
Now, one use of the first part of (2) gives the desired implication. The opposite is an immediate from (9).

## IV. METALOGICAL CONSEQUENCES OF MAIN THEOREM

We look at the relationship between the theorem in Section 2. and probability logic $L_{W O P}$.
Let $\Sigma$ be a complete consistent theory of logic $L_{W O P}$ (in some language $L$ ). Let $F m_{\Sigma}^{L}$ be the algebra of formulas associated with $\Sigma$, i.e.,

$$
\begin{gathered}
F m \equiv_{\Sigma}^{L}=\left\langle\operatorname{Form}_{/ \equiv \Sigma}^{L}, \vee^{\Sigma}, \wedge^{\Sigma}, \neg^{\Sigma}, F^{\Sigma}, T^{\Sigma}\right. \\
\left.\left(x_{\kappa}=x_{\lambda}\right)^{\Sigma},\left(P \bar{x}_{\rho} \geq r\right)^{\Sigma}\right\rangle_{\kappa, \lambda<\alpha, \rho \in \alpha_{\mapsto}^{<\omega}, r \in[0,1]} . \text { Havi }
\end{gathered}
$$

ng the above mentioned theorems it is not difficult to verify that Form $_{\equiv_{\Sigma}}^{L} \in \mathbf{w p L f} \mathbf{f}_{\alpha}$. The completeness of $\Sigma$ together with the remark at the beginning of the Section 2. asserts that Form $\bar{\equiv}_{\Sigma}^{L}$ is simple. The axiom (A11) implies that the same algebra has the rectangle property.

Denote the set of individual constants with $C$. As in a firstorder logic, the equivalence classes $\left(x_{0}=c\right)_{\equiv_{\Sigma}}$ for $c \in C$ are 0 -thin elements.
Let the next condition be satisfied for each formula $\varphi\left(x_{0}\right) \in \operatorname{Form}^{L}:$ if $\Sigma \mid-\exists x_{0} \varphi\left(x_{0}\right)$, then there exists $c \in C$ such that $\Sigma \mid-x_{0}=c \wedge \exists x_{0} \varphi\left(x_{0}\right) \rightarrow \varphi\left(x_{0}\right)$.
This condition means that our formula algebra is rich.
It can be proved that if $\varphi \in$ Form $^{L}$, then

$$
\begin{equation*}
\operatorname{ch}_{\rho}\left(\varphi_{\equiv_{\Sigma}}\right)=\max \left\{r: \Sigma \mid-\left(P \bar{x}_{\rho} \geq r\right) \varphi\right\} . \tag{1}
\end{equation*}
$$

We set

$$
Q=\left\{c: c \in C, \operatorname{ch}\langle 0\rangle\left(\left(x_{0}=c\right)_{\equiv_{\Sigma}}\right)>0\right\} .
$$

Suppose $\sum_{c \in Q} \operatorname{ch}\langle 0\rangle\left(\left(x_{0}=c\right)_{\equiv_{\Sigma}}\right)=1$.
Then, on the basis of the theorem in Section 2. there exists an isomorphism $h$ from Form $\equiv_{\Sigma}^{L}$ onto a weak probability cylindric set algebra of dimension $\alpha$.
For each $\rho \in \alpha_{\mapsto}^{<\omega}$ we let Form ${ }_{\rho}^{L}$ be the set of all formulas $\varphi(\bar{x}) \in$ Form $^{L}$ such that

$$
\varphi(\bar{x}) \in \operatorname{Form}{ }_{\rho}^{L} \text { iff } \operatorname{Rg} \bar{x} \subseteq \operatorname{Rg} \bar{x}_{\rho}
$$

Using the fact that $\operatorname{ch} \rho\left(h\left(\varphi_{\equiv_{\Sigma}}\right)\right)=\operatorname{ch}_{\rho}\left(\varphi_{\equiv_{\Sigma}}\right)$ for each $\varphi \in$ Form $^{L}$ and the result 2.4. it is possible that the set $\left\{\varphi_{\equiv_{\Sigma}}: \varphi \in \operatorname{Form}_{\rho}^{L}\right\} \subseteq$ Form $_{/ \equiv \Sigma}^{L}$ carry over the probability laws of certain product probability space.
According to (1), for each $\rho \in \alpha_{\mapsto}^{<\omega}$ it could be defined the probability on the set Form ${ }_{\rho}^{L}$.
It is natural to suggest that the investigation on the decidability of complete theories of this probability logic could be useful not only for working with probability of formulas related to a complete theory $\Sigma$, but for measure problems solving, too.

## REFERENCES

[1] Henkin L., D. Monk, A. Tarski, Cylindric Algebras, Part II, Nort-Holland, Amsterdam, 1985.
[2] Keisler H.J., Probability quantifiers, in: Model Theoretic Logics (J. Barwise and S. Feferman, eds.), Springer-Verlag, Berlin, 1985, pp. 509-556.
[3] Raskovic M., R. Djordjevic, M. Bradic, Weak cylindric probability algebras, Publ. Inst. Math. (Beograd) (N.S) 61 (75), 1997, 6-16.


[^0]:    ${ }^{1}$ College of Technology, Vase Savica 11 Arandjelovac milab@.ptt.yu

