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Some Remarks on Complete Theory of
One Probability Logic

Milanka Bradic'

Abstract - We give the representation for one class of
probability algebras whose set algebras are constructed with
respect to the probability measure spaces. On the other hand a
formula algebra of one probability logic belongs to the same
class such that it is possible to define the probabilities of
formulas as measures of corresponding sets.
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I. INTRODUCTION

Since there is no possibility of confusion, the concatenation of
two sequences X and y where f:<a> is 1-termed and
a¢ Rgx will be denoted with xa. The set of one-one

function from new into an ordinal ¢ is denoted with
a}n_>’ and o~% denotes U o~%.

new
Weak probability cylindric algebra of dimension ¢, where o
is any ordinal, is cylindric algebra of dimension & enriched
by unary operations C"(; for r e [0, 1] and pe a}i)a) which

are called probability cylindrifications. The class of all
loccally finite weak probability cylindric algebras of

dimension ¢ is denoted with wpLf,, and defined in exactly

the same way as in the theory of cylindric algebras.
DEFINITION: Let U be a set and a any ordinal. Suppose

XgUa, ueU% and pea,i)w. The set

]
XP ={xop:xeX,x\a~Rgpzu\a~Rgp}
is said to be u — p cross section of X.

A weak probability cylindric set algebra of dimension & (with
respect to the finitely additive n-fold product probability
measure spaces for 7€ w ~1) is a structure

A=<A, U,N, ~, 0, Ua,CK,CZ,DK,1>

such that x,A<a, pe a,:a), re [0, 1] and A is a non-

empty subset of SHU a’ and such that the following holds:
(1) There is a finitely additive probability measure space

U=<U,S,/¢> such that <Un,S(n),,un> is a finitely
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additive n-fold product probability measure space of U and
foreach new ~1,

{X[u]p:XeA,pea,g,ueUa}gS(n). )

C; :ShU% — ShU? forany p e a~% and any re[O,l]

such that for every X cU ? we have C6X =X, and if

Dop =n, then
C;Xz{ueUa :yn(X[u]pJZr}. (3)

The collection A is an a — dimensional cylindric field of sets

and A is closed under probability operations C Z (for all
ref0,1] andall pea=P).

II REPRESENTATION THEOREM

Some result will be mentioned which have the role in
establishing sufficient conditions for representability of

simple rich algebras from the class wpLf,,.

Suppose AewpLf,, xeAd and peaéa). By the

characteristic point of x with respect to p, in symbol

chp(x), is meant max{r:re[O, 1], C,’(;le}. This max

always exists. It is not hard to show that A is simple iff
contains just two zero-dimensional elements. This enables us

to prove that if A is simple and Ax < Rgp (Ax is the set of
all ordinals g <a for which ¢ X # x), then for each
re [0, 1] either CZx =0 or C;x =1.

If Ais assumed to be simple, we then have:

1. chp(x)=inf{r:re[o,1],c;x=o},ifx¢1.

2. If p#0 and ch p is understood as a function from
the set of all elements of 4 for which Ax € Rgp into [0, 1],
then ch D is a finitely additive function.

3. If P= <x] 1jE J> is an arbitrary system of

pairwise disjoint elements of 4 such that Ax Jj c Rgp for

788



each jeJ and Q is the set of all members x of P for which

ch P (x) >0, then Q is at most countable and

<
erQChp(x) <1.
4. If @ >® and A is a set algebra, then elements of 4

are similar to the tail sets and for any pea,’i) and any
X € A suchthat AX < Rgp we have that

yn({ x|\Rgp:x € X})z chp(X).
It should be mentioned that the third statement is extended to
arbitrary probability algebras.
The notions of the rich algebra and the O-thin element are
taken over the theory of cylindric algebras.

THEOREM: Suppose Ae wpLf, with a>® and A is

simple rich having the rectangle property. Let U be the set of
all O-thin elements in A and

zer ch<0> (x) =1, where
0= iu uel, ch<0>(u) > 0}.
Then A is isomorphic to a weak probability cylindric set

algebra such that 4, ’s are countably additive.

It should be pointed out that the proof which we given is
continued the proof of analogous theorem for cylindric
algebras (see [1]). Our proof extends an algebraic version of
Henkin’s proof of Completeness Theorem for first-order
predicate calculus to the probability case.

III. PROBABILITY LOGIC Lyyop

The logic we want to define will be called the weak ordinary
probability logic and denoted with Lyp.
A language L of this logic contains only finitary relations and

constant symbols. The sequence of variables <x§ £ <a>

has infinite length.
The connectives — and 7\, the ordinary quantifiers for all
variables, the probability quantifiers (P)_cp >r) for all

re [0, 1] andall pe a,:a) such that

%p =(xp(0): " %p(n-1) )
where Dop =n, and the equality symbol = are logical

symbols of Lyop. Also, the truth symbol T and the falsehood

symbol F are logical symbols treated as sentential constants.
The finitary connectives vV, A, — and <> are defined as
usual.

V' @ is an abbreviation for — /\ —.
ped ped
L
The set Form
least set such that: each atomic formula of ordinary first-order

of formulas of Lyop in language L is the

logic in L is a formula of Lyp, if ¢ is a formula of Lyyp,
then —¢@, Vx@, Jx@ (for all variables x) and (Px >r)p

for all probability quantifiers are formulas of Lypp, and if
® is a countable set of formulas of Lyop with only finitely
many variables, then /\ @ is a formula of Lyp .

The set of axioms for Lyop contains all formulas of the
following forms:
(A1) All axioms of ordinary first-order logic (in L);
(A2) ND—>¢@,if pe®;
(A3) (Pxz2r)p—>(Px=2s)p,ifrzs;
(A4) (Px2r)p(x) = (Py 2r)p(y).
(A5) (Px=20)e.
(A6) (Pxz2r)p An(Pxz2s)y >
= (Px 2max(0,7+ s —1)(@p Aw).
(A7) (Pxz2r)pA(Px2s)y A(Px21)

(=@ A ) = (Px 2 min(l, 7 + )} v ).
_ _ 1

(A8) —~(Px>2r)—p< V (Px >1—r+ —j(p,
new~l1 n

if r#0.

(A9) (Px=2r)p <> (Py=r)p, if Rgx =Rgy.

(A10) —(P(xc)2 )= — .

(A11) Provided Rgx M Rgy =0 and the set of all free

variables of ¢, respectively W is a subset of Rgx,

respectively Rgy,

(Px2r)(Py 2s) (@ Any)—> (Pxy=r-s)@ Ay).

The Rules of Inference are as follows: Modus Ponens,

Universal Generalization, Conjuction and Probability

Generalization.
The Deduction Theorem holds. Concerning the Completeness

Theorem the answer is positive for a similar logic Lppy,

where A is a countable admissible set, @ € A, the length of
the sequence of variables is @ and the formulas are
constructed set theoretically each of which belongs to A.

The theorems of Lyp concerning only probability part are

analogous to the theorems of Lpp (see [2]). The list below

does not contain them except of first three which will be
involved in an example of provability for one formula.

Thus the following are theorems of Lyp.

(1) If |-¢ >y, then (Px>r)p—(PX2r)y.

2) If variables from x does not free occur in @, then
|- (PX2r) (@ Ap) > @ A(PX2r)y and

|- (PX2r)(pvy) ooV (PX2ry.

3) If x, ¢ Rgx, then

|~(PXxic 2 r)p = (PX 2 r)3x,c0.

4 If x, ¢ Rgx, then

|—(P)_c 2 7)Axg-@ <> (Pxxpe 2 r)3xpe.

(5) |-—=(Px 21)—p — Ixp.
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(6) |-(Px2r)p - Ixg.

(7) |- Vxp > (Px2r)p.

(8) |- (PX 2 r)Vxyep — Ve (PX 2 7).
©) |— e (Px 27)p = (Px 2 7)3xse.
(10) If x, € Rgx, then

|- 3x (Px = ) > (PX 2 r)g.

(11) If x4,x) & Rgx, then

|—(P)_c 2r)Ixe (X =X A Q) >
© e (Px 2r)(xe =x3 A Q).

(12)
|—(P37x,( 2r)3x) (X =x) AQ) <>

If x4, x3 & Rgx, then

S (Pxxy 2r)3xe (e =x3 A Q).
As an example we sketch the proof of (11) using well known
result for first-order logic, that is,

(13) |—EIxK(xK=xi A@) > VX (X X7V Q).
Denote (Px = 7)3x;- (X = x4 A @) with 6.

Making use of (1) and (13) we get

|— O >(Px 2 )V (Xpe £x) V Q).

Using (8) and after this the second part of (2) it follows

|— O S>Vx e (Px2r)(xpe X2 V @)

|— 00— VxK(xK #zx) vV (Px2 r)(p).

Applying (13) we show

|— 60 —>3x, (xK =x) A(Px2 r)go).

Now, one use of the first part of (2) gives the desired
implication. The opposite is an immediate from (9).

IV. METALOGICAL CONSEQUENCES OF MAIN
THEOREM

We look at the relationship between the theorem in Section 2.
and probability logic Lyp.
Let X be a complete consistent theory of logic Lypp (in

some language L). Let Fmi‘2 be the algebra of formulas

associated with X, i.e.,

L
=X

(e =200, (5 200

L 2 X X

Fm =<F0rm L VAT FE TE,

< .Havi
K,A<a, pea,_f", re[O, 1]

ng the above mentioned theorems it is not difficult to verify
that Formi‘2 e wpLf,. The completeness of X together
with the remark at the beginning of the Section 2. asserts that
Formi‘2 is simple. The axiom (A11) implies that the same

algebra has the rectangle property.

Denote the set of individual constants with C. As in a first-
order logic, the equivalence classes (x() = c)EZ for ceC

are 0-thin elements.
Let the next condition be satisfied for each formula

o(xp) € Fi orml: it T |— Ixge(xp), then there exists

c€C suchthat X |— x0 =c AJxpe(xg) = e(xQ).

This condition means that our formula algebra is rich.

It can be proved that if @ € F OrmL , then

@) chp((pzz)zmax{r:Z‘— (P)_cp Zr)(o}.
We set
0= ic ‘ce C,ch<0>((x() = c)EZ )> 0}.

Suppose ZCEQCh<O> ((xo = c)EZ ) =1.
Then, on the basis of the theorem in Section 2. there exists an

isomorphism /4 from Formi‘ onto a weak probability

cylindric set algebra of dimension ¢.

For each pe a}<_>a) we let Fi Ormé be the set of all formulas

p(x) e F OrmL such that

o(X) e Formlg iff Rgx < Rgfp.
Using the fact that ch y) (h((oEz ))= ch ,0((/)52) for each

¢eF0rmL and the result 2.4. it is possible that the set

{¢EZ tpeF Ormé }g Forrn/L 5 carry over the probability

laws of certain product probability space.

According to (1), for each pe a,i)a) it could be defined the

probability on the set F Ormé .

It is natural to suggest that the investigation on the
decidability of complete theories of this probability logic
could be useful not only for working with probability of
formulas related to a complete theory X, but for measure
problems solving, too.
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