ON DISTANCE IN POST ALGEBRAS

Dragić Banković
Faculty of Science, Department of Mathematics and Informatics, P. O. Box 60, 34000 Kragujevac, Serbia, Yugoslavia

Abstract. We define a polynomial d which is a distance in Post algebras. This distance is unique.

Results

Theorem 3. Let x and y be elements of Post algebra P. Then

$$
x=y \Leftrightarrow \bigvee_{i=0}^{r-1}\left(\overline{x^{i}} y^{i} \vee x^{i} \overline{y^{i}}\right)=0
$$

Definition 1. If x and y are elements of Post algebra P then

$$
x+y=\bigvee_{i=0}^{r-1}\left(\overline{x^{i}} y^{i} \vee x^{i} \overline{y^{i}}\right)
$$

Theorem 4. The function $d: P^{2} \rightarrow P$ defined by $d(x, y)=x+y$
satisfies the conditions
(i) $\quad d(x, y)=0 \Leftrightarrow x=y$
(ii) $\quad d(x, y)=d(y, x)$
(iii) $\quad d(x, z) \leq d(x, y) \vee d(y, z)$
for all $x, y, z \in P$, i.e. d is a distance.

Theorem 5. In a Post algebra the unique distance expressed by polynomial is

$$
d(x, y)=x+y
$$

References

[1] G. Epstein, Lattice theory of Post algebras, Trans. Amer. Math. Soc. 95 (1960), 307-317.
[2] S. Rudeanu, Lattice Functions and Equations, Springer 2001.
[3] M. Serfati, On postian algebraic equations, Discrete Mathematics 152 (1996), 269-285.

Subject Classification: 03 G 20.
Key words and phrases. Post algebra; distance.

