

733

The Significance of the Low-Level Heuristics in Chess
Searching Algorithms

Vladan Vučković 1

Abstract - This paper is concern with the low-level heuristics
implementation in the author's Geniss Axon XP chess application.
The heuristics represent the expert knowledge and could be used
with a great efficiency in searching algorithms in cooperation
with standard Alfa-Beta pruning technique. The empirical tests
generated on two grandmaster games proves the high potentials
of this combination of pruning techniques.

Keywords - Computer chess, heuristics, chess searching
algorithms, programming.

I. INTRODUCTION

According to Shannon underlying works [1],[2] the
computer chess is one of the basic directions of the artificial
intelligence. The principles of machine "thought" in chess are
radically different from the human ones. Namely, the very first
works in this array proved that it is very difficult to mimic the
thought processes of the strong chess player with the
computer. The idea was to observe and analyze the steps
which human chess player must go through when decide what
move is the best to play. If one could define these steps into
the algorithm manner, the computer could be easily
programmed to follow them. But unfortunately this approach
did not shunt to the chess computer playing with grandmaster
strength. The problem is that a large amount of chess
knowledge, sometimes essential parts, stay beyond the
horizon. For instance, the chess intuition and position "feel"
are something possessed by the strong chess players and could
not be defined and transferred to machine in simple way.

The real theory of computer chess is based on different
methods of calculations [6]. First, computer orientation is
rather "brute-force" than using the smart, selective searching
[15],[16]. The first successful brute-force program was Chess
4.0 [3]. The program logic is simple, machine calculates all
legal variants (generated by all moves in every position) to the
fixed depth. Every tactical or strategic move below search
horizon will be found. This is the simplest way to make a
chess program which strength is in function only of the
searching horizon. With the fast hardware the computers could
achieve master level of play.

1 Vladan Vučković is from the Faculty of Electronic Engineering,

University of Ni{, 18000 Ni{, Yugoslavia, Email:
vld@elfak.ni.ac.yu

II. ALFA-BETA PRUNING TECHNIQUE

The main problem with the brute-force approach is
combinatory explosion which is avoidable [3],[8],[10]. For
instance, if the primary chess position has 20 legal moves by
one side, each of them generate 20 moves by the other side
which is 400 positions in total. With horizon which depth is
only 5 (beginner level of play) machine has to calculate 205 =
3.2 million positions. This enormous number of positions
could not be suppressed even with the fastest hardware. That
is the main reason why researchers in this array try to reduce
the number of nodes and branches in chess game tree as much
as possible [3],[4],[7],[11].

The basic method for pruning the chess tree is the Alfa-
Beta pruning technique [5],[9]. This method enables to skip
over a large parts of the tree which are irrelevant to the final
decision. The method is absolutely safe and gives the same
best moves in all cases compared to the standard full-width
searcher. The logic of the pruning technique could be
described on the following sample:

The presumption is that the somewhere into the decision
tree we have the node with white side on the move. If one
tracks the variant from that node to the route it is possible to
determinate the best evaluation of the opponent side on the
move (black). This value is called Beta value. Now, if the
searching process in white node found the continuation which
achieves and overcomes the Beta value the procedure could
immediately stop the further computing because it is
irrelevant. The new value could never be perforated to the root
because the better value for blacks (Beta) has already found.
The analogue method is used for black nodes opposite to
white ones to get the Alfa value. The Alfa-Beta prunes could
achieve maximum of efficiency when the best successor
position is searched first, because this position will either be
part of the principal variation or it will cause a cutoff to be as
early as possible. If the W is average number of moves per
node and D is depth the Alpha-Beta still has to search W(D+1)/2
+ WD/2 - 1 positions which compared to WD gives a double
horizon within the same amount of time.

III. THE "INTELLIGENT PIECES" CONCEPTION

In this chapter the author will present briefly his new
theoretical concept of "intelligent pieces" enabling the
framework for inducting the low-level heuristic pruning
techniques. After the broadly inspection of the Alfa-Beta
pruning the limitations of the technique is occurred. It is
interesting fact that the Alfa-Beta has general approach and

734

could be applied on all logic games, not only for chess game.
This universality limits the technique. If one wants to go
further in the process of tree pruning, the next step must be
induction of the specific chess knowledge into the searcher.
The main question is where and at what level is the best to
implement the knowledge. The rules implemented into the
program in the purpose for handling the chess knowledge are
called heuristics [3],[12]. The Geniss Axon XP [13],[14]
application has implemented author's innovative conception
called "intelligent pieces". Namely, the majority of chess
programs concentrate on move generators with a moves as the
base of the searching process. The authors conception is that
basics of the searching algorithm could be chess pieces. With
simplification, the procedure is:

• Scan the chess board,
• Locate the positions of all pieces on the board,
• Generate the machine call instruction for each of the

piece,
• Execute the code associated with each piece.

This conception automatically solve the problem where to
implement the chess knowledge - the subroutines connected
with each piece are the ideal place. There are 12 different
subroutine connected with each piece, 6 for white and 6 for
black. Each subroutine encapsulates machine code enabling
the piece to recognize different structures on the current
position and to generate move and weight in function of them.
Of course, the recognizing procedure is simplified because the
source piece is precisely defined. The analogue logic is used
also for the realization of the evaluation function.

IV. HEURISTIC PRUNING IN GENISS AXON XP

The heuristics, embedded in chess piece subroutines,
recognize some structures and generate corresponding bits
into the machine weight word. The format of the word is 16-
bits with following meanings:

• Special move bit,
• Safe bit,
• Check bit,
• Capture bit,
• Null move attack bit,
• Double attack bit,
• Escape bit,
• Force move bit,
• Attack/Defend bit,
• Queen/Rook/Knight/Pion piece identification bit,
• Null move initiator bit,
• "Touch piece" bit,
• Strategic move bit.

The bits are ordered according to their weights. The numeric
values (binary representation) directly guide the searching
process, because they generate the move ordering at the same
time. In Geniss Axon XP the heuristic pruning mechanisms are

complex and the detail recapitulation of them will surely
significantly overcome the format of this paper. The two of
them are the most important and they will be mentioned. On
Fig. 1. one position is diagrammed with the heuristic bits
associated with it:

Fig 1. Position with heuristic bits generated.

One could notice that the heuristic bits determine the move
ordering process. The two major heuristic pruning
mechanisms are:

• horizontal heuristic pruning - if the search procedure

does found the good continuation at the current node, its
positive value overpowers the further moves and prune
them in function of their heuristic bits. For example, if the
searcher found the queen capture as the good move it is
irrelevant to explore the capture moves on pions with
exception if they lead to mate treats or promotions.

• vertical heuristic pruning - the analogue with previous

technique but works with the good move found by
tracking vertically to the tree root.

The heuristic pruning techniques in cooperation with the
standard Avlfa-Beta serves much better tree searching results.
The next chapter shows some empirical data affirming that
conclusion.

V. COMPARATION RESULTS

In this chapter two tests will be performed to prove a great
profit by using the chess heuristics. The examples are from the
meridian grandmaster games. Tables I and II present the data
generated only with pure Alfa-Beta technique, while Tables II
and IV present results when heuristics are included. The tables
show that, with combination of Alfa-Beta, heuristics and
search extensions key moves could be found relatively fast, at
lower depths. The Geniss Axon XP application running on

735

Pentium I 200 MHz machine (64 Mb RAM) is used to
perform the tests.

Fig 2. The position from the Karpov-Spassky game (1973).
The wining move for white is Qg5!!.

TABLE I
TABLE SHOWS COMPARATION RESULTS OF THE POSITION

(FIG. 1) ANALYZING WITHOUT HEURISTIC PRUNING

De-
pth

Positions Time
(sec)

Move Eval
uatio

n

T.G.
F

1 407 << 1s. C1D2 +1.30 -
2 5439 1 s. C1D2 +1.30 13.36
3 19084 3 s. C1D2 +1.30 3.508
4 244872 32 s. C1G5! +1.38 12.83
5 687547 1:27 s. C1G5! +1.38 2.808
6 6360400 13:18 s. C1G5! +1.44 9.251

TABLE II
TABLE SHOWS COMPARATION RESULTS OF THE POSITION

(FIG. 1) ANALYZING WITH HEURISTIC PRUNING

De-
pth

Positions Time
(sec)

Move Eval
uatio

n

T.G.
F

1 407 << 1 s. C1D2 +1.30 -
2 1169 1 s. C1D2 +1.30 2.872
3 3391 1 s. C1D2 +1.30 2.900
4 10196 2 s. C1D2 +0.59 3.006
5 40985 5 s. C1G5! +1.38 4.019
6 91550 12 s. C1G5! +1.40 2.233
7 221544 28 s. C1G5! +1.30 2.430
8 539533 1:06 s. C1G5! +1.18 2.435
9 2518123 4:55 s. C1G5! +1.18 4.667

Fig 3. The position from the Fischer-Tal game (the tournament

of candidates, 1959.). The winning move for black is Bg2!!.

TABLE III
TABLE SHOWS COMPARATION RESULTS OF THE POSITION

(FIG. 2) ANALYZING WITHOUT HEURISTIC PRUNING

De-
pth

Positions Time
(sec)

Move Eval
uatio

n

T.G.
F

1 756 << 1 s. C6G2! +2.29 -
2 6678 1 s. C6G2! +1.79 8.833
3 27567 3 s. A6A5 +1.73 4.128
4 228819 26 s. A6A5 +1.86 8.300
5 766494 1:26 s. C6G2! +1.88 3.349
6 7362057 13:35 s. F8G8! +2.10 9.604

TABLE IV
TABLE SHOWS COMPARATION RESULTS OF THE POSITION

(FIG. 2) ANALYZING WITH HEURISTIC PRUNING

De-
pth

Positions Time
(sec)

Move Eval
uatio

n

T.G.
F

1 756 << 1 s. C6G2! +2.29 -
2 2281 << 1 s. C6G2! +1.79 3.017
3 6278 1 s. F8G8! +1.68 2.752
4 17975 2 s. C6G2! +1.82 2.863
5 105336 12 s. C6G2! +1.88 5.860
6 247685 29 s. C6G2! +1.82 2.351
7 936609 1:48 s. C6G2! +1.71 3.781
8 1528003 2:55 s. C6G2! +1.99 1.631
9 6091125 11:28 s. F8G8! +1.99 3.986

736

The analyses of the empirical data show that heuristic pruning
implemented in chess application could significantly reduce
the number of positions computed in game tree. If one
compares the results among the tests with and without
heuristics it is obvious that if the heuristics are included the
same results of searching (key moves) are generated in the
much less amount of time. Also, the greater depths could be
achieved. The next conclusions could be postulated:

• At the same search depth, heuristic pruning save

enormous number of positions. For example, at depth 6,
(Tables I and II) if no heuristic are included program must
generate 6360400 positions but with heuristics only
91550 which is only 1.4% of the primary number of pos.
The key moves are correct in both cases (c1g5!). The
similar situation is with Fig. 3 (Tables III and IV), where
the pruned tree is about 3.3% of the source one.

• The Tree Growth Factor, which is the indicator of the

combinatory explosion is much less when heuristics are
included (Fig 2., Tables I and II , at depth 6, 2.233
compared to 9.251 and with Fig 3., Tables III and IV,
2.351 compared to 9.604).

• The searching are more stabile when heuristics are

included. The key moves are found earlier, and remain
unchangeable in next search iterations.

VI. CONCLUSION

The main intention of this paper is to present some new
concepts connected with heuristic induction into the chess
searching process. The authors concept of "intelligent pieces"
could be very solid framework for integrating the expert
knowledge with the searching algorithm and programming it at
low-level machine language. The results in Chapter V show
that the heuristics could provide a great savings in generated
positions. The extra time obtained in that way could be used to
achieve the greater searching depth and to increase the power
of machine play. On the contrast of the Alfa-Beta pruning
technique, which is absolutely safe, the heuristic pruning could
make false cut and reject some good move which is not within
the current heuristic. But if the heuristic is applied on the
instant position, the tree pruning could be enormous. Of
course, the theory and practice of the chess heuristic pruning
are at the beginning but their developing will be very benefit
for the increase of power of the computer chess play.

REFERENCES

[1] Claude E. Shannon “Programming a computer for playing

chess”, first presented at the National IRE Convention,
March 9, 1949. New York, U.S.A

[2] Claude E. Shannon “A chess-playing machine”, reprinted
with permission, Scientific American, 1950, USA

[3] Peter W. Fray Chess Skill in Man and Machine, texts and
monographs in computer science, Springer-Verlag,
1977,1978, New York, USA

[4] Search Algorithms, http://fbi001.onformatik.fh-
hamburg.de/~owsnicki/search.html, 2000.

[5] Analysis of Alpha-Beta Pruning,
http://www.npac.syr.edu/copywrite/pcw/node351.html,
2000.

[6] T.A.Marsland, The Anathomy of Chess Programs, ICCA
homepage, http://www.icca.com, 1999

[7] Allis, L.V. Ingo Althöfer: “On pathology in game tree and
other recursion tree models” ICCA Journal, Vol. 15, No.
2, p. 80. (1992).

[8] Donskoy, M.V. “Fundamental concepts in search” ICCA
Journal, Vol. 13, No. 3, pp. 133-137. (1990).

[9] Junghanns, A. “Are there practical alternatives to Alpha-
Beta?” ICCA Journal, Vol. 21, No. 1, pp. 14-32. (1998).

[10] Kaindl, H., Horacek, H. and Wagner, M. “Selective
search versus brute force” ICCA Journal, Vol. 9, No. 3,
pp. 140-145. (1986).

[11] Marsland, T.A. “A review of game-tree pruning” ICCA
Journal, Vol. 9, No. 1, pp. 3-19. (1986).

[12] Schaeffer, J. “The history heuristic” ICCA Journal, Vol.
6, No. 3, pp. 16-19. (1983).

[13] Vuckovic, Vladan "The Basic Elements of the Chess
Program Implementation", Proceedings of a Workshop on
Computational Intelligence and Information
Technologies, pg. 17-23, June 20-21. 2001.

[14] Vuckovic, Vladan "Decision Trees and Search Strategies
in Chess Problem Solving Applications", Proceedings of
a Workshop on Computational Intelligence and
Information Technologies, pg. 141-159, February 27.
2001.

[15] Bruin, A. de, Pijls, W. and Plaat, A. “Solution trees as a
basis for game-tree search” ICCA Journal, Vol. 17, No. 4,
pp. 207-219. (1994).

[16] Anantharaman, T.S., Campbell, M.S. and Hsu, F.
“Singular extensions: adding selectivity to brute-force
searching” ICCA Journal, Vol. 11, No. 4, pp. 135-143.
(1988).

	Back to WS1
	Main menu

