

737

DD Package Generator

Suzana Stojković, Dragan Janković, Milena Stanković

Abstract: Decision diagrams (DDs) are frequently used as
efficient data structures for discrete functions
representation and manipulation. One of approaches in
DD packages development is a generic approach. Generic
approach provides uniform development of DD packages
working with different types of DDs. This paper presents
the DDPG (DD Package Generator) program for the
generation of C++ code of DD packages. Generated
packages can manipulate with shared MDDs, and contain
implementations of user-defined operations and spectral
transforms.

I. INTRODUCTION

Many problems in digital logic design, artificial

intelligence, telecommunications, etc. are based on
manipulations of discrete functions. Because of that, various
methods for discrete functions representations were
developed. Graph-based representation of Boolean functions,
by Bryant 1986. [6], named Binary Decision Diagrams
(BDDs), are very frequently used. Analogously, for the multi-
valued discrete functions representation Multi-Valued
Decision Diagrams (MDDs) are defined. For various
applications, different types of DDs are defined. DD
programming is a frequently decided problem in last years. In
the papers [4] and [6] are defined the basic DD programming
principles: to support dealing with shared DDs, to have unique
node table, to support strong canonicity, to have unique
compute table, to use efficient memory management. Existing
DD packages (such as: CUDD, PUMA, BXD, VIS, SIS,
[3],[4],[5],[6]) are efficient in work with any type of DDs or
in work with some classes of discrete functions. Because of
that, development of a DD package, which works with any
type of DDs, is very useful. The paper [9] proposed a uniform
approach in DD package development, named generic
approach. On the base of that approach, DDPG (DD Package
Generator) is build. DDPG is a program that generates C++
code of DD packages which work with a shared multi-valued
DDs (MDDs). For code generating DDPG needs an input
specification of DD package. Input DD package specification
(DDP specifiacation) is a formal DD package description
written in DDPSL (DD Package Specification Language)
[10]. DDP specification describes operations and/or spectral
transforms which are implemented in generated package.

Suzana Stojković, Dragan Janković, Milena Stanković
Faculty of Electronics, Beogradska 14, Niš, Yugoslavia
e-mail: suza@elfak.ni.ac.yu

II. DECISION DIAGRAMS AND SPECTRAL
TRANSFORMS

Decision diagrams are acyclic directed graphs that
contain nonterminal nodes, terminal nodes, and edges.
Nonterminal nodes are labeled with a variables xi in f and have
q output edges. Output edges are labeled with a values of
variable xi. Terminal nodes contain the values of function f at
the points defined by n-tuples, which label edges from the root
node to the corresponding terminal nodes. In BDDs
nonterminal nodes have two successors, while in MDDs
nonterminal nodes have more then two successors. Fig. 1
shows BDD of binary function f(x1,x2,x3) defined by the truth-
vector F=[0,0,0,0,0,1,1,1] and MDD of ternary function
g(x1,x2,x3) defined by the truth-vector
G=[0,0,0,0,2,1,2,0,0,1,1,1,2,2,2,2,0,0,1,1,1,2,2,2,2,0,0].

Fig. 1: BDD of function f (a) and MDD of function g (b).

Spectral transform (S), of q-valued n-variable
discrete function f is defined as the product of transform
matrix (Tn) and the truth-vector of the function f (F).

FTS n ⋅=
where the transform matrix Tn is defined by:

11 TTT nn ⊗= −
where T1 is the basic (qxq) transform matrix, and ⊗ denotes
the Kronecker product.

Calculation of spectral transform of functions
represented by DDs is done by performing elementary
transform (defined by basic transform matrix) in each
nonterminal node of DD.

III. DD PACKAGE IMPLEMENTATION

Basic problems in DD package implementation are:
• to choose appropriate data structure for DD node

representation;
• to select efficient algorithm for DD generation;
• to support basic principles for DD programming.

738

Data structure for BDD node representation, defined in
paper [6], has been usually used in existing BDD packages
(see Fig. 2).

Fig. 3 shows data structure for MDD node
representation suggested in paper [7].

struct node
{

node *high,*low;
int index;
int value;
int id;
int ref_counter;
boolean mark;

}
Fig. 2: Data structure for BDD node representation.

typedef struct node *DDedge;
typedef struct node
{

int ref;
char value,flag;
DDedge next, previous;
DDedge edge[0];

} node;
Fig. 3: Data structure for MDD node representation.

There are different ways for discrete function
representation (truth-vector, cubes, …). Because of that
different algorithms for DD building were developed. All they
contain series of logical operrations on DDs. One of the basic
principles for DD programming is using the compute table
where the results of previous calculation are stored. Due to, all
logic operations are improved by using one universal operator.
In the binary logic, it is if-than-else (ITE) operator, but in
multi-valued logic it is the CASE operator.

ITE operator [4] is a Boolean function of 3 variables
(F,G,H) defined as: If F then G else H, and formal:

() HFGFHGFite ⋅+⋅=,,
In paper [9] is shown the relationship between

definition table of an Boolean operator and realization of that
operator by ITE. Definition table of an arbitrary Boolean
operation is shown in Tab. 1.

Tab. 1: Definition table of Boolean operator OP.
OP 0 1
0 v0,0 V0,1
1 v1,0 V1,1

If two switching functions a i b are represented by
BDDs, computation of aOPb can be realized by ITE operator
as follows:

 () () ()()00100111 ,,v,b,v,ite,,v,b,va,iteitea,bOP = .

AND operator can be realized by using ITE operator as
follows:

() () ()()
()() ()0,,0,0,1,,

0,0,,0,1,,,

baitebiteaite

bitebiteaitebaAND

==
=

CASE operator in q-valued logic is (q+1)-variable
function defined as follows:
 () iF for GGGGFCASE iq ==−110 ,,,, L .

CASE operator can be used for realization of any q-
valued discrete function. Paper [9] shows the realationship
between definition table of a q-valued function and the
corresponding CASE operator. If q-valued operator (qOP) is
defined by Tab. 2, then the operator qOP can be realized by
CASE operator as:

()

)),,,,

),...,,,,,

),,,,,(,(,

0,02,01,0

0,22,21,2

0,12,11,1

vvvbCASE(

vvvbCASE(

vvvbCASEaCASEbaqOP

qq

qqqqq

qqqqq

L

L

L

−−

−−−−−

−−−−−=

Tab. 2: Definition table of q-valued operator qOP.
QOP 0 1 … q-1

0 v0,0 v0,1 … v0,q-1
1 v1,0 v1,1 … v1,q-1
M M M … M

q-1 vq-1,0 vq-1,1 … vq-1,q-1

Spectral transform computation on DDs can be realized
as a set of operations + and * (in corresponding algebraic
structure). Because of that, ITE (CASE) operator is sufficient
for spectral transform computation on BDD (MDD). In the
paper [9] a generic approach in spectral transform
implementiation is shown, too. If a spectral transform is
defined by the basic transform matrix T, transformation in
nonterminal node v can be performed as:

)))),(),((),,((

))),,(),((),,((

))),,(),((),,(((

)(_

22,211,20,2

22,111,10,1

22,011,00,0

vtMULvtMULLADDvtMULADD

vtMULvtMULLADDvtMULADD

vtMULvtMULLADDvtMULADDnode

vnodetrans

o

o

o=
=

Fr

om that, it appears that code for any operation and any
spectral transform can be generated automatically if the
corresponding definition tables are known.

IV. DD PACKAGE CODE GENERATION

DDPG (Decision Diagram Package Generator)

generates C++ code of DD package on the base of input DD
package specification. For input DD package specification
formal language DDPSL (DD Package Specification
Language) [10] was developed. DD package specification
contains definition of q-value of logic, definitions of
operations and spectral transformations which will be
implemented in generated package. In the input specification,
operations are defined only by definition tables, but transform
definitions contain definitions of + and * operators, basic
transform matrices, and C++ code blocks which will be
inserted in a generated code. Contents of inserted code blocks
will be described later (section 5). Generation process is
devided into two steps. In the first step input specification is
parsed. If there are any syntax or semantic errors in input
specification, the generation process is stopped and error
messages is shown. If there are not any errors, the generation
process continues and in the second step the C++ code will be
generated.

739

V. GENERATED CODE FEATURES

Generated C++ code is based on DDP class library.

DDP class library contains all basic classes for a DD
manipulation. The most important classes in DDP library are:
• DDNode – represents the MDD node,
• DDEngine – represents shared MDD,
• DDNodeMaker – abstract class which creates DDNode.

Class DDNode realizes both terminal and nonterminal
nodes in MDD and contains the following attributes:
- unique node identifier;
- variable index associated with nonterminal node;
- value of terminal node;
- number of input edges in the node;
- dynamic vector of pointers to the successor nodes;
- pointer to the next node at the same level;
- mark field which indicates if the node is processed or not (it

is used in different DD manipulations).
In the class DDNode abstract functions for the logical

operations AND, OR and NOT (which are dependent on q-
value of logic) and arithmetic operations ADD and MUL
(which are dependent on algebraic structure) are declared.
These functions will be implemented in generated class
derived from the class DDNode.

The most important attributes in class DDEngine are:
- variables number;
- q-value of logic;
- output functions number;
- unique DD node table implemented as an hash table;
- unique computeTable – table of CASE operator

computations whose entry contains input nodes pointers and
result node pointer;

- array of the root nodes pointers.
In the class DDEngine, all basic functions for MDD

manipulation are defined. Frequently used functions are:
- bool createMDDfromCubes() – creates MDD of

function defined by cubes, returns true if creation is finished
correctly;

- bool createMDDfromTV() – creates MDD of function
defined by truth-vector, returns true if creation is finished
correctly;

- void levelExchange(unsinged k,unsigned l) –
exchanges levels k and l in the MDD;

- void printMDD() – prints MDD;
- void printMDD(char k) – prints MDD for k-th output

function;
- unsigned getValue(unsigned *m,char k) – returns

the value of k-th output function for minterm m;
- unsigned getValue(unsigned long i,char k) –

returns value of k-th output function for index i;
- void printTV(char k) – prints a truth-vector of k-th

output function;
- unsigned size() – returns nonterminal nodes number.

Class DDNodeMaker contains abstract function for
DDNode creation. For each class, derived from DDNode,
DDPG generates the corresponding node-maker class derived

from DDNodeMaker. DDEngine class receives pointer to the
node-maker class by constructor.

Class diagram of DD package generated by DDPG is
shown on Fig. 4. In the diagram, DDP library classes are
colored by blue and generated classes are colored by yellow.
DDPG generates:
• DDNode<q> - class derived from DDNode class where

functions for logical operations (AND, OR and NOT) and
functions for each operations, defined in operation section
of input DDP specification, are implemented in;

as well as for each transform, defined in transformation
section of DDP specification, the following classes:
• <trName><q>DDNode – class in which operators + and *,

for corresponding transform, are implemented;
• <trName><q>DDEngine – class in which spectral

transform function is implemented.
In transform description in DDP specification, some code
blocks describing global definitions and extra class members
of classes <trName><q>DDNode and
<trName><q>DDEngine can be specified. Global definitions,
labeled as DDNodeInclude and DDEngineInclude, DDPG
inserts at the beginning of files <trName><q>DDNode.h and
<trName><q>DDEngine.h, but extra class members, labeled
as DDNodeClass and DDEngineClass, inserts in definitions
of the corresponding classes. At the end of each generated
.CPP file DDPG generates comment:

// place your definitions here
If DDP specification will be changed, code part written

after that comment will be saved into regenerated files.

DDNode<q>

<TrName><q>DDNode

<TrName><q>DDEngine

DDNode

HashTable

DDNodeMaker

<TrName><q>DDNodeMaker

DDEngine

n
+rootNodes

n

1

+nodeTable

1

1 +ddNodeMaker1

1

+computeT abl e

1

Fig. 4: Class diagram of generated DDPackage.
There are implementations of all generated operations

in DDNode<q> class. It follows that once defined operation
(including OR and AND) can be used in different transforms
as operator + or *. In this way, performances of object-

740

oriented programming are optimally used for efficient code
generation.

Example. DDP specification for generation of DD
package, wich deals with RMF and GF transforms in a 4-
valued logic is shown in the Fig. 5. Class diagram of the
corresponding generated DD package is shown at Fig. 6.

valueability = 4

// operation section
operator ADD_MOD4 = {
 0, 1, 2, 3,
 1, 2, 3, 0,
 2, 3, 0, 1,
 3, 0, 1, 2,
 }
operator MUL_MOD4 = {
 0, 0, 0, 0,
 0, 1, 2, 3,
 0, 2, 0, 2,
 0, 3, 2, 1,
 }

// transform section
transform RMF = {

ADDoperator = ADD_MOD4
MULoperator = MUL_MOD4
{
 1, 0, 0, 0,
 1, 3, 0, 0,
 1, 2, 1, 0,
 1, 1, 3, 3,
}

}
transform GF = {
 ADDoperator = ADD_MOD4
 MULoperator = MUL_MOD4
 {
 1, 0, 0, 0,
 0, 1, 3, 2,
 0, 1, 2, 3,
 1, 1, 1, 1,
 }

}

Fig. 5: DDP specification.

DDNode4

RMF4DDNode

RMF4DDEngine

RMF4DDNodeMaker

DDNode DDNodeMaker

HashTableDDEngine

n+rootNodes n

1

+nodeTable

1

1 +ddNodeM ake r1

1

+computeTable

1

GF4DDEngine

GF4DDNode

GF4DDNodeMaker
(f rom D D)

Fig. 6: Class diagram of package generated from
specification shown in Fig.5.

VI. CONCLUSION

Generic approach in DD package implementation

enables development of an automatic code generator for DD
packages. Based on generic approach, tool DDPG is
developed. For software generation by using DDPG, input
specification is needed. Input specification is a formal
specification, written on DDPSL, that contains definition
tables of operations and transforms which will be
implemented in generated package. In this way generated
packages can manipulate with different types of DD-s. Base
of generated C++ code is DDP library class which contains
classes for basic manipulations over DDs. DDP library is
developed by using the proposed basic principles of DD
programming. This library is not finished. Current shortages
of class library can be compensated by user-defined extra
members in generated classes.

REFERENCES

[1] Sasao, T., Fujita, M., Representations of Discrete
Functions, Kluwer Academic Publishers, 1996.

[2] Stankovic, R. S.; Stankovic, M.; Jankovic, D., Spectral
Transforms in Switching Theory, Definitions and
Calculations, Nauka, Belgrade, 1999.

[3] Somenzi, F., CUDD Rerease 1.1.1, 1996
[4] Brace, K.S., Rudell, R. L., Bryant, R. E., ''Efficient

implementation of a BDD package'', In Design
Automation Conference, San Francisko, Juny 1991,
417-421.

[5] Hett, A., Drechsler, R., Becker, B., The DD Package
PUMA – An Online Documentation,
http://www.informatic.uni-freiburg.de/FREAK/
puma/puma.htm, 1996.

[6] Bryant, R. E., ''Graph-based algorithms for Boolean
functions manipulation'', IEEE Trans. on Computers,
Vol. C-35, No. 8, August 1986, 677-691.

[7] Miller, D. M., Drechsler, R., ''Implementing a multiple-
valued decision diagram package'', Proc. 28th Int.
Symp. on Multiple-Valued Logic, Fukuoka, Japan,
1998, 52-57.

[8] Miller, D. M., Drechsler, R., ''On the construction of
Muliple-Valued Decision Diagrams'', Proc. 32d Int.
Symp. on Multiple-Valued Logic, Boston, USA, 2002,
245-253.

[9] Drechsler, R., Jankovic, D., Stankovic, R. S., ''Generic
implementation of DD Packeges in MVL'' Proc.
EURIMICRO '99, Milano, 1999. 352-358.

[10] Stojkovic, S., Jankovic, D., ''DD Package Specification
Language'', ETRAN'2002, Banja Vrucica, Yugoslavia,
june 2002, (in Serbian).

	Back to WS1
	Main menu

