
Complete BDDs for Fast and Efficient Equivalence Checking�

Rolf Drechsler

Institute of Computer Science
University of Bremen

28359 Bremen, Germany
drechsle@informatik.uni-bremen.de

Abstract

Modern proof engines for formal verification, like used
in equivalence checking and bounded model checking, are
based on multi-engine concepts. This guarantees robustness
and high flexibility of the tools. One important technique
are Ordered Binary Decision Diagrams (BDDs). Typically,
BDDs are used in a reduced form.

In this paper we study complete BDDs, i.e. BDDs that
are not fully reduced. Even though complete BDDs require
more space counted in the number of nodes, they have sig-
nificant advantages for applications where a fast decision
is needed whether the BDD can be build or not, since the
synthesis operations can be simplified. Experiments run on
a prototype implementation show that very good improve-
ments in terms of run time can be achieved, i.e. in some
cases more than 90% of the CPU time can be saved.

1 Introduction

With larger and larger designs, the verification task be-
comes the bottleneck in many flows. Simulation alone is
not sufficient to guarantee sufficient coverage. Furthermore,
too much manual interaction is required for test vector gen-
eration and evaluation and analysis of the results. As a
very promising alternative formal verification techniques
have been proposed. In the meantime they have been suc-
cessfully applied in equivalence checking and (bounded)
model checking (see e.g. [2, 11, 14, 9]). The core algo-
rithms for these methods are so-called proof engines, that
make e.g. use of SAT, BDDs, random pattern simulation,
and ATPG. Non of the techniques alone is powerful enough
to solve all problems. Only by a tight integration of the dif-
ferent concepts robust and flexible engines can be build (see
e.g. [5, 14]).

One of the most successful prover techniques are ordered
Binary Decision Diagrams (BDDs) [4]. BDD packages are
typically based on recursive operations that make use of a
three operand function commonly known as ITE [3]. For
details on the efficient implementation of BDD packages
see [3, 12, 16]. Usually, BDD packages are “general” pack-
ages that allow all type of Boolean function manipulation
and minimization concepts, like dynamic variable ordering.
For the application descried above, this is not needed. Typ-
ically, variable reordering [15] is always switched off, since

�This work was supported in part by DFG grant DR 287/8-1.

it is too time consuming. In case the BDD cannot find a so-
lution fast, it is likely that the problem is difficult for BDDs,
and it is better to start another prover engine. For this,
we now focus on optimization of the techniques needed for
fast equivalence checking. For Combinational Equivalence
Checking (CEC), it is only necessary to determine whether
two given circuit implementations realize the same Boolean
function. Many of the operations included in standard pack-
ages are not used for CEC applications. The check for com-
binational function equivalence needs to be performed very
fast since, if CEC is applied to large designs, it is often the
case that several million comparisons are carried out. For
an overview of the general verification flow of an equiva-
lence checker see [9]. Recently, a restricted BDD package
has been proposed in [6], where all operators were substi-
tuted by NAND. The resulting BDDs are called NAND-
BDDs. Of course, still all binary operations can be used,
since NAND is a complete basis Significant reductions of
runtime compared to ITE could be observed.

In this paper we present a technique to further improve
the CPU time for BDD construction on top of the results of
NAND-BDDs. Instead of fully reducing the BDD as orig-
inally proposed in [4], we consider complete BDDs (also
called pseudo-reduced), i.e. BDDs that share isomorphic
sub-graphs, but nodes with both edges pointing to the same
node are not removed. Complete BDDs need more nodes on
average, but the memory needed per node is smaller, since
no index has to be stored. Furthermore, the synthesis oper-
ation is sped up, due to cases that have to be checked in re-
duced BDDs, but become superfluous for complete BDDs.
The caching behavior is also improved. Experimental re-
sults run on a prototype implementation show that reduction
in runtime of more than 90% can be observed.

This paper is structured as follows: In Section 2 BDDs
are defined. The ITE operator and the reduction to NAND-
BDDs is briefly reviewed. Complete BDDs are discussed in
Section 3 and differences with respect to other synthesis op-
erators are outlined. Experiments are presented in Section
4. Finally, the results are summarized.

2 Preliminaries

A brief definition of (NAND-)BDDs and a review of
the synthesis operation is presented to make the paper self-
contained [6].



ite(F,G,H) �
if (terminal case) return result;
if (computed-table entry (F,G,H) exists) return result;

let �� be the top variable of �F,G,H�;

THEN = ite����
� ���

� ���
� ;

ELSE = ite����
� ���

� ���
� ;

if (THEN == ELSE) return THEN;

// Find or create a new node with variable v and
// sons THEN and ELSE
R = Find or add unique table(��,THEN,ELSE);

// Store computation and result in computed table
Insert computed table(�F,G,H�,R);

return R;
�

Figure 1. ITE-algorithm

2.1 Binary Decision Diagrams

As is well-known a Boolean function � � �� � � can
be represented by a Binary Decision Diagram (BDD) which
is a directed acyclic graph where a Shannon decomposition

� � �������
� �������

�� � � � ��

is carried out in each node. A BDD is called ordered if each
variable is encountered at most once on each path from the
root to a terminal node and if the variables are encountered
in the same order on all such paths. A BDD is called re-
duced if it does not contain isomorphic subgraphs nor does
it have redundant nodes. Reduced and ordered BDDs are
a canonical representation since for each Boolean function
the BDD is uniquely specified.

A BDD is called complete, if isomorphic sub-graphs are
shared, but each node appears along each path. The com-
plete BDDs considered in the following make use of an or-
dering restriction.

For functions represented by reduced and ordered BDDs
efficient manipulations are possible [4]. These algorithms
with slight modifications can be transfered to complete
BDDs (see below) In the following, we refer to reduced and
ordered BDDs for brevity as BDDs and explicitly mention
the completeness property.

To consider complete BDDs is also justified from a the-
oretical point of view, since the difference to fully reduced
BDDs is bound by a linear factor [1]. Furthermore, the main
reduction from an asymptotical point of view results from
sharing of isomorphic sub-graphs, as it is also carried out in
complete BDDs (see [10]). For an in-depth discussion on
the size of complete decision diagrams see [13].

2.2 If-Then-Else Operation

A brief description of the typical synthesis operation em-
ployed in most BDD software packages is given here. The
synthesis of a BDD � depending on some Boolean rela-
tion between two existing BDDs � and � is carried out by
performing a recursive call on subgraphs. A sketch of the

NAND(F,G) �
if (terminal case) return result;
if (computed-table entry (F,G) exists) return result;

let �� be the top variable of �F,G�;

THEN = NAND����
� ���

� ;
ELSE = NAND����

� ���
� ;

if (THEN == ELSE) return THEN;

// Find or create a new node with variable v and
// sons THEN and ELSE
R = Find or add unique table(��,THEN,ELSE);

// Store computation and result in computed table
Insert computed table(�F,G�,R);

return R;
�

Figure 2. NAND-algorithm

recursive If-Then-Else (ITE) algorithm from [3] is given in
Figure 1.

The �	
 function can be considered to be a functionally
complete three-input logic gate that implements the expres-
sion, �	
 � � � � � � � � . Using this relation, the BDD
���
� operation can be implemented with any arbitrary
Boolean operation as an argument. The computed table
stores previously computed results and the three arguments
are pointer values to � ,� and� . Therefore, if the synthesis
operation has been previously computed, further recursions
are unnecessary as the computed result in the cache is sim-
ply passed back. The addition of the cache structure to BDD
package implementations is well known to significantly re-
duce runtime in the synthesis of a BDD (see e.g. [8]).

2.3 NAND-BDDs

In the approach considered in [6] the synthesis algorithm
is restricted to one operation only, the Boolean NAND. The
resulting algorithm is shown in Figure 2. As can be seen,
the overall flow is exactly the same as for the ITE algorithm;
however, only two instead of three operands are required.
This improves the hit rate of the computed table and also
reduces its size.

For a detailed discussion of the properties of NAND-
based synthesis in comparison to ITE see [6]. The underly-
ing BDDs are reduced in both cases, i.e. only the synthesis
algorithm is modified, but not the representation itself. No-
tice that NAND is sufficient to carry out all Boolean opera-
tions, like AND and OR, since NAND is a complete basis.

3 Complete BDDs

In this section the use of complete BDDs in fast equiv-
alence checking is discussed. The implementation is done
on top of NAND-BDDs, i.e. all the (positive) properties can
be directly transferred.

An implementation based on complete BDDs differs
from reduced BDDs in several ways:



NAND complete(F,G) �
if (terminal case) return result;
if (computed-table entry (F,G) exists) return result;

THEN = NAND complete����
� ���

� ;
ELSE = NAND complete����

� ���
� ;

// Find or create a new node with variable v and
// sons THEN and ELSE
R = Find or add unique table(��,THEN,ELSE);

// Store computation and result in computed table
Insert computed table(�F,G�,R);

return R;
�

Figure 3. Synthesis algorithm for complete
BDDs

Additional nodes for path completion: All variables ap-
pear along each path from the root to the terminal
nodes of the BDD. Starting from a fully reduced BDD,
the nodes can simply be introduced. The overhead is
moderate, i.e. only linear in the number of variables (as
has been proven in [1]).

No check for top variable: The synthesis algorithm does
not have to check for the top variable, since due to the
completeness property the top variables are the same
in both functions to be synthesized.

No reduction of nodes with the same successor: During
the recursive call of the synthesis algorithm, one out
of the two “reduction checks” is skipped.

No storing of index: In standard BDD packages, the index
of the variable has to be stored in each node. For com-
plete BDDs it is sufficient to store the ordering only
once and not as part of each node. This reduces the
BDD node size by approximately 10-20%.

Earlier terminal cases: The completeness property often
guarantees earlier termination of the recursive calls.

A sketch of the algorithms on top of NAND-BDDs is shown
in Figure 3. The current implementation described here
does not use complemented edges (see [3, 12]). This can
be integrated directly and would likely lead to a further re-
duction of runtime and memory requirements.

The realization of the package described here is based on
the principle that all operations that are not relevant for the
computation of the BDD are avoided. This allows for no
processing time overhead to be expended for a CEC appli-
cation that would otherwise be present if a general purpose
BDD package were employed. Due to this approach, the
technique described here is not a “full” BDD package since
other features are missing. In particular, it is noted that
neither Dynamic Variable Ordering (DVO) nor a memory
management is included. Both are left out due to efficiency
reasons, since they are not of interest for CEC, i.e. both are
time consuming operations, but do not contribute to the de-
cision whether functions are equivalent.

The lack of inclusion of these features actually has the
advantage that the package only performs operations that
are relevant for constructing a BDD as fast as possible and
within specified memory limits. In practice when using
multi-engine concepts, it is better to get a fast result so that
the BDD approach to CEC does not give a solution when
the maximum allowable node count is exceeded rather than
wasting an excessive amount of runtime that could be better
used by other CEC techniques based on principles such as
SAT-solvers or term re-writing.

Complete BDDs have the following properties:

� They are easier to implement. This results from the
simplicity of the synthesis operation and the fact that
DVO and memory management is not supported. This
also results in simplification of debugging the code.

� Usually more nodes are allocated due to the complete-
ness property. Further nodes are generated by the
NAND operation instead of ITE. However, memory
is also saved by avoiding the index per node, the ref-
erence count and the reduction of the computed table
size due to two instead of three operands.

� Complete NAND-BDDs are useful for fast CEC and in
this sense they are not a “full” BDD package since op-
erations that are important for other applications such
as quantification, DVO and garbage collection are not
realized as efficiently as in other packages.

4 Experimental Results

In this section experimental results are given that show
the behavior of complete BDDs as compared to an ITE and
a NAND-BDD realization - both in reduced form - using
well known benchmark examples. The experimental results
were carried out using a SUN Ultra 1 with 256 MBytes. All
times are given in units of CPU seconds.

The prototype software has been written in C++. In
order to provide a fair comparison, all packages are im-
plemented in the same environment in that neither pack-
age uses a memory manager and all three are implemented
without the use of complemented edges. The packages
only make use of the simple terminal case and do not con-
sider techniques like case normalization or ITE constant as
described in [3]. The implementation of complete BDDs
makes use of the techniques of NAND-BDDs.

Benchmarks from ISCAS85 and the combinational part
of ISCAS89 are used in the experimental results. For all
packages the same static variable ordering using a method
similar to that described in [7] is used and a hard upper node
limit of 500.000 is used�. The only benchmarks reported
here are those for which at least one technique obtained a
result within this node limit and within 1 CPU hour. Fur-
thermore, we focus on “non-trivial” examples which take
longer than 1 CPU second.

In contrast to reduced BDDs, the introduction of new
variables on which the function does not depend, can create
additional nodes in the representation. But this difference
is rather small and has no significant influence on the run-
time as is shown in Figure 1 for benchmark c0432. Here,
max var denotes the maximal number of variables, while
the circuit has only 36 inputs. The runtime is given in the

�Note that the use of a node limit instead of a memory limit is pes-
simistic for complete BDDs, since the memory per node is smaller.



Table 2. Reduced vs. complete BDDs during construction

name in out ITE NAND Complete
nodes time nodes time nodes time

cs01423 91 79 87987 2.34 117833 1.04 343027 5.36
cs05378 214 228 47583 15.20 52375 12.47 400847 7.81
c0432 36 7 28656 190.81 35591 5.48 49050 0.67
c1908 33 25 162035 264.24 185989 2.43 160208 2.53
c5315 178 123 116416 10.36 186178 1.80 - -
c0880 60 26 50843 0.35 60326 0.52 154470 2.04
c0499 41 32 136821 264.14 146193 84.67 154842 2.53
c1355 41 32 - - - - 347448 7.96

Table 1. Dependence on number of variables

name max var nodes time
c0432 36 49050 0.67

40 49058 0.67
44 49066 0.67
50 49078 0.67

100 49178 0.68

last column. Here the “redundant variables” are added at
the end of the ordering. The situation can become worse, if
they are chosen in between.

In the experiments we measure the CPU time and the
number of nodes needed for the BDD construction. The re-
sults are given in Table 2. The name of the benchmark is
given in the first column. The number of inputs and outputs
of each circuit are given in column in and out, respectively.
In columns ITE, NAND, and Complete, nodes and time de-
notes the number of nodes allocated during the BDD con-
struction and the time needed, respectively. As can be seen,
complete BDDs perform on average much better than re-
duced BDDs. Even compared to NAND-BDDs further sig-
nificant reductions can be observed (see e.g. c0499). The
number of nodes in complete BDDs is larger and this can
lead to the case that the BDD cannot be build, while the
other techniques succeed. This can especially occur for
functions with many variables (see c5315). On the other
hand, due to the fast operation, this “node overflow” is de-
tected very fast and in the case of CEC does not block other
techniques. In contrast, if happens that complete BDDs suc-
ceed to build the graph in a few seconds, while both other
techniques cannot do it within the given time limit. Of
course, for fast equivalence checking based on multi-engine
solvers the proposed technique has significant advantages,
since no time is wasted on a non-promising approach.

5 Conclusions

Complete BDDs have been studied in this paper. It has
been shown that the synthesis operation can be simplified
and several advantages have been discussed. First experi-
mental results on a prototype implementation have lead to
significant runtime reductions for symbolic simulation as it
is used in combinational equivalence checking.

It is focus of future work to include the techniques de-
scribed above in a highly optimized BDD package, like
CUDD [16], to see how the numbers transfer. It is ob-
vious that savings can be obtained also in this case, since
the package is simplified, but more experimental studies are
needed.

References

[1] B. Becker, R. Drechsler, and R. Werchner. On the relation
between BDDs and FDDs. Information and Computation,
123(2):185–197, 1995.

[2] A. Biere, A. Cimatti, E.M. Clarke, M. Fujita, and Y. Zhu.
Symbolic model checking using SAT procedures instead of
BDDs. In Design Automation Conf., 1999.

[3] K.S. Brace, R.L. Rudell, and R.E. Bryant. Efficient imple-
mentation of a BDD package. In Design Automation Conf.,
pages 40–45, 1990.

[4] R.E. Bryant. Graph-based algorithms for Boolean function
manipulation. IEEE Trans. on Comp., 35(8):677–691, 1986.

[5] J.R. Burch and V. Singhal. Tight integration of combina-
tional verification methods. In Int’l Conf. on CAD, pages
570–576, 1998.

[6] R. Drechsler and M.Thornton. Fast and efficient equivalence
checking based on NAND-BDDs. In IFIP Int’l Conf. on
VLSI, pages 401–405, 2001.

[7] H. Fujii, G. Ootomo, and C. Hori. Interleaving based variable
ordering methods for ordered binary decision diagrams. In
Int’l Conf. on CAD, pages 38–41, 1993.

[8] A. Hett, R. Drechsler, and B. Becker. MORE: Alternative
implementation of BDD packages by multi-operand synthe-
sis. In European Design Automation Conf., pages 164–169,
1996.

[9] A. Kuehlmann, M. Ganai, and V. Paruthi. Circuit-based
Boolean reasoning. In Design Automation Conf., pages 232–
237, 2001.

[10] H.-T. Liaw and C.-S. Lin. On the OBDD-representation of
general Boolean functions. In IEEE Trans. on Comp., vol-
ume 41, pages 661–664, 1992.

[11] J.P. Marques-Silva and K.A. Sakallah. Boolean satisfiabil-
ity in electronic design automation. In Design Automation
Conf., pages 675–680, 2000.

[12] S. Minato, N. Ishiura, and S. Yajima. Shared binary decision
diagrams with attributed edges for efficient Boolean function
manipulation. In Design Automation Conf., pages 52–57,
1990.

[13] S. Nagayama, T. Sasao, Y. Igushi, and M. Matsuura. Repre-
sentations of logic functions using QRMDDs. In Int’l Symp.
on Multi-Valued Logic, pages 261–267, 2002.

[14] V. Paruthi and A. Kuehlmann. Equivalence checking com-
bining a structural SAT-solver, BDDs, and simulation. In
Int’l Conf. on Comp. Design, pages 459–464, 2000.

[15] R. Rudell. Dynamic variable ordering for ordered binary de-
cision diagrams. In Int’l Conf. on CAD, pages 42–47, 1993.

[16] F. Somenzi. Efficient manipulation of decision diagrams.
Software Tools for Technology Transfer, 3(2):171–181, 2001.


	Back to WS1
	Main menu

