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Abstract - – Fixed Polarity Reed-Muller (FPRM) expressions 

are polynomial expressions for Boolean functions. A method for  
optimization of FPRMs using dual polarity property has been 
published in [4]. FPRMs are a subclass of Kronecker 
expressions. Analogously to dual polarity for FPRMs we 
introduce the notion of extended dual polarity for Kronecker 
expressions and present a  method for optimization of Kronecker 
expressions for Boolean functions exploiting this concept.  
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I.  INTRODUCTION 
 
AND-EXOR realizations have some advantages over AND-
OR expressions, such as high testability [1,2], low cost for 
arithmetic and symmetric functions in the number of product 
count, detection of symmetric variables [5], Boolean matching 
[6], etc. Fixed Polarity Reed-Muller expressions (FPRMs) are 
an important class of AND-EXOR expressions. For some 
classes of functions used in practice, FPRMs require fewer 
products than AND-OR expressions [3]. For an n-variable 
Boolean function there are n2  FPRMs. Optimization of 
FPRMs is a problem of finding the FPRM with the smallest 
number of product terms. 
 Kronecker expressions are potentially better than FPRMs 
in optimization of Boolean functions if criterion is the number 
of non-zero terms. There are n3  different Kronecker 
expressions for an n-variable Boolean function. FPRMs are a 
subclass of Kronecker expressions. 
 In [4], it is given a method for optimization of FPRMs 
using the dual polarity property. In this method, all of n2  
possible FPRMs are calculated by using relationship between 
two FPRMs whose polarities are dual. Method starts from the 
zero polarity FPRM. 
 In this paper, we extend the term “dual polarity” into the 
”extended dual polarity” and show the relationship between 
two Kronecker expressions with extended dual polarities. 
Based on these relationships, we generate a new algorithm for 
optimization of Kronecker expressions of Boolean functions. 
The algorithm starts from the truth-vector of a given Boolean 
functions and calculate all n3  Kronecker expressions using 
route in which each two neighbours polarities are extended 

dual. We denote this route as the “extended dual route” and 
present a  procedure for determination of this route. 
The algorithm proposed is an exhaustive-search algorithm, but 
conversion from one Kronecker expression to another 
extended dual polarity Kronecker expression is carried out 
using one-bit checking. Due to that, and a simple processing 
this algorithm appears efficient. Experimental results show 
efficiency of the proposed algorithm. 
  

II. BASIC DEFINITION 
 
Definition 1: Each n-variable switching function f given by 

the truth-vector [ ]Tnff 120 ,,
−

= KF  can be represented by 
the positive polarity Reed-Muller expression (PPRM) defined 
as 
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where ⊗  denotes the Kronecker product, and addition and 
multiplication are performed modulo 2. )(nR  is the Reed-

Muller transform matrix of order (2n×2n).  
 If each variable can appear as complemented or 
uncomplemented, but not both, the related expressions is 
denoted as the fixed-polarity Reed-Muller (FPRM) and is 
given as  
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Therefore, FPRMs are uniquely characterized by the polarity 

vectors [ ] { }1,0  ,,,1 ∈= i
T

n hhh KH , where 1=ih  shows 

that the i-th variable is complemented and written as ix . (In 
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the case of Kronecker expressions –(see definition 2)- hi will 
be allowed also to take the value 2, meaning that the I-th 
variable may appear both in complemented and non-
complemented form.) 
 A FPRM can be given by the FPRM spectrum H

fR  
calculated as 

FRR )(nH
H
f = . 

 
Example 1: The FPRM of a 2-variable Boolean function f, 

given by the truth-vector [ ]T0,1,1,0=F , for a polarity vector 
)1,0(=H  is given by 

12211221 101111),( xxxxxxxxf ⊕⊕=⋅⊕⋅⊕⋅⊕⋅= . 

The corresponding FPRM spectrum is given by 
]0,1,1,1[=H

fR . 
 
The FPRM of function f can be represented by the set of 
binary strings here called terms. A variable that is present in a 
product term is replaced by 1, and 0 replaces an absent 
variable. Therefore the FPRM for a function f  and polarity 
vector given in Example 1 is represented by the following 
term set  

{ }10 ,01 ,00 . 

Definition 2: Each n-variable switching function f given by 

the truth-vector [ ]Tnff 120 ,,
−

= KF  can be represented by 
the Kronecker expression defined as 
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Example 2: The Kronecker expression of a 2-variable 
Boolean function f, given in Example 1, for a polarity vector 

)1,2(=H  is given by 
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The corresponding Kronecker spectrum )1,2(
fK is given by 

]1,1,1,0[)1,2( =fK  and the set of terms is { }11 ,10 ,01 . 
 

III. EXTENDED DUAL POLARITY 
 
Each Kronecker expression is characterized by its polarity 
vector. Two polarity vectors are dual if they differ in only one 
bit.  We introduce the term “extended dual polarity” which 
will be used in our minimization method. 

Definition 2: )',,',',',,'(' 111 niii hhhhh KK +−=H  is the 

dual of ),,,,,,( 111 niii hhhhh KK +−=H  iff h’j =hj,  j ≠ i 

and ii hh ≠' . 
 
Example 3: Extended dual polarities for polarity )0,1(=H  
are the polarities (0,0), (2,0), (1,1), and (1,2). 
 

The number of polarity vectors, which characterize all 
possible Kronecker expressions for an n-variable Boolean 
function, is n3 . It is possible to order all n3 polarities in a 
way that each two successive polarities are extended dual 
polarities. This order we denote as the “extended dual polarity 
route”. Traversing the 3-valued n-dimensional hypercube can 
generate one of several possible extended dual polarity routes. 
 
Example 4: An extended dual polarity route generated by 
traversing a 3-valued n-dimensional hypercube is given by 

(000)—(001)—(002)—(012)—(011)—(010)—(020)—
(021)—(022)—(122)—(121)—(120)—(110)—(111)—
(112)—(102)—(101)—(100)—(100)—(201)—(202)—
(212)—(211)—(210)—(220)—(221)—(222) 
 
 An extended dual polarity route can be constructed by 
using the recursive procedure route(level, direction) given in 
Fig. 1, called as route(0,0). 
 

 
IV. METHOD FOR CALCULATION OF KRONECKER 

EXPRESSION 
 

Let n
ii

i mmmm 1
1

1 +
−=  be the compact representation of a 

term in the Kronecker expression for a given function f for the 
polarity )( 111 niii pppppp LL +−= . Term m produces 
new terms in the Kronecker expression of the function f for 
the extended dual polarity 

)'''''(' 111 niii pppppp LL +−=  depending on the value 

of ip  and ip' . Table I shows all cases. In some of them , the 
term produces a  new term while in some other cases, the term 
is modified so that only one of its bits is complemented. These 
processing rules are simple and ensure efficiency of the 
method. After processing all terms, by using these rules, a  
procedure for the deleting of equal terms starts.  
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void route(int level, int direction) 
{  
   if( direction == 0) 
   {  if(level == no_variable) 

{  --  out new polarity vector h } 
else  
{  h[level] = 0; 

route(level+1, 0); 
h[level] = 1;  
route(level+1, 1); 
h[level] = 2; 
route(level+1, 0);  

 } 
   } 
   else 
   {  if(level == no_variable) 

{ -- out new polarity vector h } 
       else 

     {   h[level] = 2;  
           route(level+1, 1); 
           h[level] = 1;  
           route(level+1, 0); 
           h[level] = 0;  
           route(level+1, 1);  
           }    
   } 
} 

Figure 1: Procedure route  
 
Example 4: Let the (012)-polarity Kronecker expression for a 
3-variable Boolean function f given by the truth vector 

T]1,0,0,1,0,1,0,1[=F be given by  

32132131313 xxxxxxxxxxxf ⊕⊕⊕⊕=  

i.e. the Kronecker spectrum is [10001111]T. 
The extended dual polarities and the corresponding 

extended dual polarity Kronecker expressions are given in the 
Table II. 

Calculation procedures for these extended dual polarity 
Kronecker expressions are shown in Tables III, IV, V, VI, 
VII, and VIII. Note that deleted terms are marked with a 
simple line  while changed terms, with a double line. 
 

TABLE  I 
PROCESSING RULE. 

ip  ip'  new terms 

0 1 
1 0 

if im =1 then  generate  n
i

i mm 1
1

1 0 +
−  

0 2 
2 0 

if im =0 then  generate  n
i

i mm 1
1

1 1 +
−  

1 2 if im =1 then set im =0 

if im =0 then generate n
i

i mm 1
1

1 1 +
−  

2 1 if im =0 then set im =1 

if im =1 then generate n
i

i mm 1
1

1 0 +
−  

 
 TABLE  II 

EXTENDED DUAL POLARITY KRONECKER EXPRESSIONS. 
polarity  spectrum  
112 
212 
002 
022 
010 
011 

(01111111) 
(10000111) 
(10000011) 
(10100011) 
(11001010) 
(01001010) 
 

TABLE  III 
POLARITY (012) TO (112). 

polarity (012) new terms polarity (112) 
000 
100 
101 
110 
111 

 
000 
001 
010 
011 

001 
010 
011 
100 
101 
110 
111 

 
TABLE  IV 

POLARITY (012) TO (212). 
polarity (012) new terms polarity (212) 

000 
100 
101 
110 
111 

100 000 
101 
110 
111 

 
TABLE  V 

POLARITY (012) TO (002). 
polarity (012) new terms polarity (002) 

000 
100 
101 
110 
111 

 
 
 

100 
101 

000 
110 
111 

 
TABLE  VI 

POLARITY (012) TO (022). 
polarity (012) new terms polarity (022) 

000 
100 
101 
110 
111 

010 
110 
111 
100 
101 

000 
010 
110 
111 

 
TABLE  VII 

POLARITY (012) TO (010). 
polarity (012) new terms polarity (010) 

000 
100 
101 
110 
111 

001 
101 

 
111 

000 
001 
100 
110 
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TABLE  VIII 
POLARITY (012) TO (011). 

polarity (012) new terms polarity (011) 
000 
100 
101 
110 
111 

001 
101 
100 
111 
110 

001 
100 
110 

 

 
V. OPTIMIZATION ALGORITHM 

 
Example 4 shows that it is possible to calculate all possible 
Kronecker expressions using the proposed method for 
transforming fixed polarity Kronecker expressions into 
extended dual polarity Kronecker expression along the route 
without repetitive calculations. Therefore, we can perform 
optimization of Kronecker expressions by using the following 
exhaustive-search algorithm. 
 
Algortihm 

1. Initialization: 
- set the polarity vector p’ to H=(2,2,…,2),i.e., popt 

=H(2,2,…,2).  
- nC 2min =  - number of non-zero coefficients 

2. List all the minterms for an n-variable switching 
functions f. 

3. Obtain the Kronecker expansion for the polarity p’ 
based on the proposed rule. Calculate the total 
number of non-zero coefficients min'C .  

If  minmin' CC <   then  minmin 'CC = . 

4. Stop if all the polarities have been treated. Otherwise 
go to the step 5. 

5. Determine the next polarity p’, of the Kronecker 
expansion according to the recursive route and go to 
the step 3. 

 
VI. EXPERIMENTAL RESULTS 

 
In this section, we present some experimental results 
estimating features and efficiency of the proposed algorithm 
for the minimization Kronecker expressions. We developed a 
program in C for determination of optimal Kronecker 
expression for arbitrary Boolean functions represented by 
minterms. The experiments were carried out on 400 MHz PC 
Celeron with 64Mb of main memory and all runtimes are 
given in CPU seconds. Table IX gives the runtimes for the 
Kronecker expression optimization for the simple functions 
taking the value 1 at first three minterms (0,1,2), randomly 
generated functions with 25% of all possible minterms, and 
randomly generated functions with 75% of all possible 
minterms, where the number of variables n ranged from 5 to 
10.  It can be concluded that the number of minterms 
strongly influences the runtime of proposed algorithm. 
 
 

TABLE  IX 
EXPERIMENTAL RESULTS. 

n  (012) 25% 75% 
5 
6 
7 
8 
9 
10 
11 

< 0.01 
< 0.01 
0.04 
0.25 
1.41 
8.19 

47.93 

0.01 
0.04 
0.52 
6.24 

73.27 
890.00 

10831.21 

0.01 
0.05 
0.56 
5.93 

75.19 
917.09 

11199.35 
 

VII. CONCLUDING REMARKS 
 
We have introduced the notion of extended dual polarities in 
Kroencker expressions for Boolean functions and present a  
method for conversions of Kronecker expressions from one 
polarity to another. Based on this method, we determine an  
algorithm for calculation of all Kronecker expressions. 
Calculation is performed starting from the truth-vector. All 
Kronecker expressions are calculated along the route that 
provides calculation of each Kronecker expressions exactly 
once.  

The proposed method for transformation of Kronecker 
expressions from one to another one extended dual polarity is  
simple. Therefore, our exhaustive-search Kronecker 
expression optimization method is very efficient. 
Experimental results confirm this. Future work will be in 
extension of the proposed method and related algorithm to 
polynomial expressions for multiple-valued functions.  
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