

753

The Functional Decomposition and
Machine Learning

Katja B. Rangelov1

Abstract - Learning from data is the central theme of

Knowledge Discovery in Databases (KDD) and Machine
Learning (ML) community. In order to handle large databases,
certain assumptions (e.g. Occam’s Razor [13]) are necessary to
make the problem tractable. The requirement to find solutions
of low complexity is both in Machine Learning and in the
multiple-valued logic synthesis community. The purpose of this
paper is to demonstrate the applicability functional
decomposition of switching function paradigm to the Machine
Learning.

Key words - functional decomposition, multiple–valued

function, machine learning, knowledge data discovery, inductive
learning.

I. INTRODUCTION

When dealing with a complex problem, a good strategy is

to decompose it to less complex and more manageable sub-
problems.

Functional decomposition of binary function was proposed
by Ashenhurst [16] in the beginning 1950s, as a method of
Boolean logic minimization. While this process has been
known for many years, it could not be utilized because of the
large complexity computation procedures that are required. In
the late 1980s, functional decomposition was re-introduced as
an application to Field Programmable Gate Array’s (FPGA)
design synthesis [17].

Since then decomposition has been applied to many
aspects of Boolean and multiple-valued logic synthesis [8,
15].

The relationship between machine learning and logic
synthesis is based on the similarities between realising
circuits with low complexity (smaller size, simpler
description) and natural assumption of Occams’Razor [13].
In logic synthesis, the result of synthesis is a circuit designed
with respect to the minimal number of gates, inputs, literals,
or product terms. In the case of machine learning, the goal is
a reduction of an instance space (compressing sets of
examples, attributes and attributes-value triples in a technique
called a partition triple). The problems are analogues. In
machine learning, we have a database with fields and records.
A set of records defines the concept. In logic synthesis, the
fields are binary variables (inputs) of the circuit and each
record is a specification. The entire set of these records
defines the circuits.

Using Occam’s Razor, which is a principle in machine
learning that states that if several theories explain all the facts
that the simplest theory is the best, does this.

1Katja B. Rangelov is with the Technical University of Sofia, the

Faculty of Computer Systems and Control, 1756 Sofia, Bulgaria, E-
mail: krang@tu-sofia.acad.bg, krang@abv.bg,

II. MACHINE LEARNING

In machine learning the idea is to find patterns in the data,

such that the data can be partitioned into smaller concepts
(data blocks), which correspond to the sub-blocks of the
decomposition. The principle of using decomposition in
machine learning is to reduce a given function specified by a
set of care minterms (samples or examples) to a composition
of smaller function (concepts).

The result is a set of expression that describes suitable
intermediate concepts. Each of these intermediate concepts
can then be decomposed further, leading to expressions that
form a more comprehensible description of the learned
concepts. The advantage of using decomposition to obtain
useful intermediate concepts is that it leads to a result
specified as a hierarchy of compositions. The produces the
description of the original function as a hierarchy of sub-
functions and variables [5, 6, 7, 11], which leads to learning
that is faster, involves smaller error and gives better
explanation of the learned concepts.

The term machine learning is defined as a process by
which a machine gains the capability to solve problem by
examining examples or data. Machine learning is a process
called inductive learning [3, 5, 7,] which uses empirical
evidence, in the form in examples, to derive rules for the
given data. These system use automated inductive inference
(in the machine learning paradigm) to give rules or meaning
to the data (known as classification). Rules are operations on
variables, such as the average function, addition, subtraction,
etc. Finding rules on variables is a process of discovering
patterns and relations that exist between variable
combinations. Machine learning is not en exact methodology,
but is an attempt of learning based on heuristics and
probabilities. This way of learning is becoming more and
more important as computers provide relatively inexpensive
means to collect and store data. The traditional methods, such
as manual data analysis, are insufficient to fully evaluate a
given data set. Instead, a new method called Knowledge
Discovery in Databases (KDD) [3, 7] is being used to analyse
data using analytical tools from statistics, pattern recognition,
and artificial intelligence.
 In other words, learning is done by using all the known
outputs of a given function to help in the determination of
value for all don’t knows in the output of the given function.
By treating examples as cares and considering function with
many don’t cares, a machine learning problem can be directly
converted to a logic synthesis problem.

Definition1: The components of a function y = f (x0, x1,

…,xn-1) where the set {x0, x1, …, xn-1} is defined as the input

754

attributes, minterms are defined as examples, and the output y
is the target concept to be learned.

Definition2: During decomposition of machine learning

functions, y = F (x0, x1, …, xn-1) any xi is known as either an
input attribute or an intermediate concept (e.g. a Φ composite
function in Curtis decomposition [4]).

 The setting of unknown values to known values is done by
creating a network of multi-valued input and multivalued
output blocks by decomposing the original function into a
hierarchical network of multi-leveled blocks (intermediate
concepts). A machine learning algorithm is evaluated on its
learning effectiveness by how it reduces the error of the
resulting network. Error is how well the algorithm in
question sets don’t know terms to care terms. A common
method for evaluating a machine learning algorithm is to
select a training set, which is a random sampling of the
original known values from the test function. The result of
learning the training set is then compared to the original test
function. If the expression has a high error rate then it does
not approximate the test function well and is not a useful way
to describe the function.

Given that induction is a method of extrapolating samples
of a function, the extrapolating process is very complex unless
some reasonable simplification assumptions are used. For a
Boolean function over nn-attributes, the function has a truth
table with 2n rows. Any truth table with 22n rows can represent
22n different functions. Because of the large number of
possible functions, it is difficult to find a hypothesis function
g that approximates f given a small set of examples of f.

To allow reasonable results in the extrapolation process for
finding g, assumptions must be used. The assumption that is
generally made is the one of low complexity, as in Occam’s
Razor (also known as Ockham’s Razor). In Occam’s Razor
the most likely hypothesis is the simplest one that is consistent
with all observations.

The logic circuit and machine learning are similar, but there
are some significant differences. The biggest difference is that
most circuit – related multi-valued logic problems are nearly
completely specified, while functions in machine learning
tend to be 99.9% unspecified in their respective learning
domain.

III. MISSING ATTRIBUTES

The possibility exists that data collected could have missing
attributes in the example. A missing attribute is represented
by an input don’t know to denote the missing data. To
associate the concepts of a missing attribute to that of logic
synthesis, input doesn’t know is akin to input don’t care. In
logic synthesis, an input A is don’t care when, given a set of
all other inputs, all possible values of A do not result in a
change in the output of the function.

Definition 3. An input don’t care is defined as covering all
possible values for a given variable.

In machine learning, the possibility exists that data collected
could have a missing attribute [1, 9, 10] in the data.

Definition 4. An input don’t know is defined as representing
one (unknown) data value, not all possible values for a given
variable.

For example [1], a questionnaire asks for a person’s age. It
is possible that the person does not want to state his/her age;
in general, instead of guessing at an approximate age, a don’t
know is placed in the category. In terms of logic synthesis, a
don’t care implies that the person is all the ages between 0 and
120. While a don’t know implies that a person has only one
age between 0 and 120.

One possible method of determining missing attributes is to
find two input cubes C1 and C2 that intersect and have the
same output value. Thus, C1 ∩ C2 ≠∅ and the minimal
solution for the missing attributes for these two cubes is C1 ∩
C2 . This is illustrated in the next example.

Example 1 [1]. Given the set of input cubes (a dash

indicates a don’t know, or a don’t care): _bcd, a _ cd, ab _ d
and abc_. Figure 1a shows the logic synthesis reduction method,
where all the minterms are placed in essential prime
implicants. The result is a minimum circuit with four product
terms and one sum term. Figure 1b shows the machine
learning reduction. The cube: _bcd, is thought to have a
don’t know such that _bcd specifies that either the minterm
abcd exists or the minterm −bcd exists. Because the
intersection of all the input cubes is abcd, the minimal
solution is abcd. (Note: the minimal solution does not imply
that it is the best solution).

Another method of determining missing attributes is to use

probabilities. Probabilities are used to determine the value of a
missing attribute by determining how probable a value is. A
baseline probability is defined as any value occurring more
than X-times. If this occurs, then the value is accepted and a
don’t know can represent all values in the range when the
baseline probability is zero or it is possible that no values are
in the range. This methodology can be performed by using a
preprocessing algorithm that determines (probabilistically)
what the don’t know values should be changed too. The
following example illustrates the concept of using
probabilities for determining the value of a don’t know.

Example 2. [1] Figures 2a through 2d show the possible
combinations when given the cubes: a_ and _b. Because

755

there are four combinations, then the probability of finding
any of the Karnaugh maps in Figures 2a-d, is ¼ .Figure 2e
shows the probabilities of finding an output value with a value
of one. By assuming the probability baseline in the interval
[0,1], every minterm is calculated to be true or false. By
setting the probability baseline to be greater than 0.5 then
only the minterm ab is true, resulting in the Figure 2f. If the
probability baseline is greater than 0.4, the function is shown
in Figure 2g.

Another method of determining missing attributes is to use
relations [2], but the relations are only used to indefiy
overlapping cubes. The relations treat don’t know as don’t
cares, but overlapping cubes of different valued are stored.
Example 3 illustrates the concept of a relation.

Example 3 [1]. Given the cubes: a_ and _b, the relation

recognizes that the two cubes overlap at ab. For instance, ifa_

has the output value 0, and _b has the output value 2 then the
cube ab has the output value of 0 or 2. The use of relations only
preserves the information that the output of the minterm ab has
two different values. This is shown in Figure 3a.

For logic synthesis methods to be used on machine learning

problems, missing attributes/input don’t knows need to be
represented in the data structure. A possible representation is
to create a new cofactor for each variable that contains don’t
know information.

Theorem 1. Given a Qf -valued function f(x0; x1; : : :; xn-1),
each variable xi has value Qi, so that f may be denoted as f :
Q0 x Q1 x … x Qn-1 → Qf . To represent an input don’t
know, each variable xi has value Qi + 1, where the (Qi + 1)th

value represents a don’t know. The function f may now be
denoted as f: (Q0 + 1) x (Q1 + 1) x … x (Qn-1+ 1) →Qf .
This is called the Don’t Know (DK) representation.

Proof. f : Q0 x Q1 x … x Qn-1 → Qf ⊂ f (Q0 + 1) x (Q1 + 1)
x … x (Qn-1+ 1) →Qf thus, the original function is still
represented by the DK representation of the function.

�

For the partition AB, a DK partition matrix is defined as
the (Q0 + 1) x (Q1 + 1) x … x (Qn-1+ 1) functional values of
f, arranged in QA rows, and QB columns.

After creating the DK representation of f, and forcing the
input don’t knows in the function to values, it is necessary to
transform the DK representation of f back to f’s original
functional representation.

Theorem 2. Given that f is denoted as f (Q0 + 1) x (Q1 +1)

x …x (Qn-1 +1) → Qf then it is possible to transform f back to
f : Q0 x Q1 x …x Qn-1 → Qf , iff each Qi + 1 value for
variable xi is not defined.

Proof. If each Qi + 1 value is not defined, then all input
don’t knows in the function are set to a given value. The
addition of the Qi+1 value of each variable is not needed and
can be removed. This has no effect on f because the Qi+1
value was not originally defined in the original function.

�

IV. CONCLUSION

 Why use the functional decomposition? Decomposition
has the advantage that it is not based on a set of operators or
gates (in contrast to all other logic synthesis methods). This is
especially notable in the case of multiple-valued logic, where
the number of operators can increase as the value of the logic
grows. Decomposition is not constrained by a technology or a
pre-selected single theory. This has wide applications in both
logic synthesis and machine learning.
 Machine learning problems also contain continuous data or
data that is in the form of real numbers, not only natural
numbers. This type of data has shows itself to be very
difficult for multi-valued function decomposition. There have
been attempt to map real-valued variables onto natural
numbers by discretatization.
 Another problem that exists is data noise. Noise in
machine learning could be caused by many different things –
noise that is in the input and noise that is generated on the
output.
 Handling noise, discretatizion continuous data or data that
is in the form of real number onto natural are needs to be
looked into further in machine learning community.

REFERENCES

[1] C. M. Files, “New Functional Representation for the

Decomposition of Machine Learning Problem”, Third
Symposium on Logic Design and Learning, Conference
Proceedings, pp. Oregon, USA, May 2000.

[2] M. Perkowski, M. Marek-Sadowska, L. Jozwiak, T. Luba, S.
Grygiel, M. Nowicka, R. Malvi, Z. Wang, J.S. Zhang,
“Decomposition of Multiple-Valued Relations”, Proc. IEEE
International Symposium on Multiple-Valued Logic, pp.13 –
18, Nova Scotia, Canada, May 1997.

[3] J. A. Goldman, M. L. Axtell, “ On Using Logic Syntesis for
Knowledge Discovery”, Tools with AI conference, 1997

[4] H. A. Curtis, A New Approach to the Design of Switching
Circuits, Princeton, D. Van Nostrand Co. Inc., NJ, 1962.

756

[5] B. Zupan, M. Bohanec, I. Bratko, J. Demsar, “Machine
Learning by Function Decomposition, Proceedings of the
Fourteenth International Conference Machine Learning
(ICML'97), pp. 421 – 429, Nashville, Tennessee, July 1997.

[6] B. Zupan, M. Bohanec, J. Demsar, I. Bratko, “Feature
transformation by function decomposition”, IEEE Intelligent
Systems & Their Applications, vol. 13, pages 38-43, 1998.

[7] B. Zupan, M. Bohanec, I. Bratko, B. Cestnik, “A data set
decomposition approach to data mining and machine
discovery”, Proceedings of the Third International Conference
on Knowledge Discovery and Data Mining, pp. 229 – 302,
Newport Beach, Canada, August 1997.

[8] T. Luba, “Decomposition of Multiple – Valued Functions”,
Proc. of 25th IEEE International Symposium on Multiple-
Valued Logic, pp. 256 – 261, Bloomington, Indiana, USA,
May 23 – 25, 1995.

[9] C. M. Files, M. A. Perkowski, “ Multi-Valued Functional
Decomposition as s Machine Learning method”, Proc. on 28th
IEEE International Symposium on Multiple-Valued Logic, pp.
173 – 178, Fukuoko, Japan, May 27 –29, 1998.

[10] C. M. Files, M. A. Perkowski, “ An Error Reducing Approach
to Machine Learning Using Multi-Valued Functional
Decomposition”, Proc. on 28th IEEE International Symposium
on Multi-Valued Logic, pp. 167 – 172, Fukuoko, Japan, May
27 – 29, 1998.

[11] B. Zupan, Machine Learning Based on Functional
Decomposition, PhD thesis, University of Ljubljana, Slovenia,
1997.

[12] Y. Abu-Mostafa, Compexity in Information Theory, Springer -
Verlag, New York, 1988.

[13] A. Blumer, A. Ehrenfeucht, D. Haussler, M. K. Warmuth,
Occam’s razor, Information Processing Letters, pp.377 – 380,
1987.

[14] C. M. Files, A New Functional Decomposition Method As
Applied to Machine Learning and VLSI Layout, Ph.D.
Dissertation, Portland State University, Portland Oregon, June
2000.

[15] M. A. Perkowski, S. Grygiel, “A Survey of Literature on
Function Decomposition”, Technical report, Portland State
University, Portland, Oregon, November, 1995.

[16] R. L. Ashenhurst, “The decomposition of switching functions”,
International Symposium on Theory Switching Function, pp. 74
– 116, 1959.

[17] Y. T. Lai, M. Pedram, S. B. K. Vrudhula “BDD based
decomposition of logic function with application to FPGA
synthesis, Design Automation Conference, pp. 642 – 647, 1993.

	Back to WS1
	Main menu

